Assessing the Need for Personal Protective Equipment: A Guide for Small Business Employers

Small Business Safety Management Series

U.S. Department of Labor
Occupational Safety and Health Administration

OSHA 3151
2000 (Reprinted)
About This Booklet

The materials in this handbook are based upon the federal OSHA standards and other requirements in effect at the time of publication, and upon generally accepted principles and activities within the job safety and health field, but should not be considered as a substitute for the standards.

This booklet is not intended to be a legal interpretation of the provisions of the Occupational Safety and Health Act of 1970 or to place any additional requirements on employers or employees.

The material presented herein will be useful to small business owners or managers and can be adapted to individual establishments.

All employers should be aware that there are certain states (and similar jurisdictions) which operate their own programs under agreement with the U.S. Department of Labor, pursuant to section 18 of the Act. The programs in these jurisdictions may differ in some details from the federal program.

Material contained in this publication is in the public domain and may be reproduced, fully or partially, without permission of the Federal Government. Source credit is requested but not required.

This information will be made available to sensory impaired individuals upon request. Voice phone: (202) 693-1999.
Contents

Introduction ... 1
 Who should read this guide? .. 1
 How will this guide help protect my employees? ... 1
 What is personal protective equipment? .. 1

Establishing a PPE Program .. 2
 What is a PPE program? .. 2
 How do I develop a PPE program for my company? .. 2

The Need for PPE .. 3
 Who must provide PPE? .. 3
 How do I identify potential hazards in my workplace? ... 3
 I have identified potential hazards. Now what? ... 3
 What are work practice and engineering controls? ... 3
 All feasible engineering and work practice controls are in place, but my employees
 are still exposed to potential hazards. Is now the time to provide PPE? 4
 How do I get started assessing my workplace operations for PPE needs? 4

Eye and Face Protection .. 8
 When must I provide eye protection for employees? ... 8
 How do I select the proper protective eyewear for employees? .. 8
 If employees wear eyeglasses with prescription lenses, may I consider these eye protection? 8
 What kind of eye and face protectors are there? What are they for? 8
 Can face shields protect employees instead of goggles or protective spectacles? 9
 How do I choose the correct eye protection from among all the different types? 9
 How dark do lenses on welding helmets and goggles need to be? 10
 How do I protect employees from exposure to laser beams? ... 12
 How can I be sure that laser safety goggles provide enough protection? 14
 Once I have selected the appropriate protective eye equipment, how do I make sure
 employees use it properly? ... 14
 My workplace gets pretty dirty. How will my employees keep their protective eyewear
 clean and effective? .. 15
 My employees work in shifts. Could I provide one pair of protective eyewear for each
 position instead of each employee? .. 15

Head Protection ... 16
 When do my employees need head protection? ... 16
 What should I look for in head protection? ... 16
 What types of head protection are available? .. 16
 How do I choose the correct protective helmets from among the different types? 17
 I have purchased new hard hats for my employees that meet the ANSI requirements.
 Have I fulfilled my responsibility to protect my employees’ heads? 17
 Could employees wearing hard hats and working at elevations create a potential hazard for
 the employees working below? ... 17
 Can I require employees to cut their hair if it is long enough to get tangled in machinery? 18
 Once I have selected helmets to protect my employees’ heads, how do I make sure they
 use them properly? .. 18
 How do I make sure that the hard hats I provide will be kept in good condition? 18
Foot and Leg Protection ... 20
 When must I provide foot and leg protection? .. 20
 What are the types of protection and where do I use them? 20
 What should I look for when choosing safety shoes for my employees? 21
 Conductive Shoes .. 21
 Electrical Hazard, Safety-Toe Shoes .. 21
 Foundry Shoes ... 22
 Once I have selected equipment to protect my employees’ feet and legs, how do I make sure they use it properly? 22

Hand and Arm Protection ... 23
 When must I provide hand and arm protection? 23
 What kind of equipment is necessary to protect hands and arms? 23
 Is there one kind of glove that will protect against all workplace hazards? ... 23
 What kinds of protective gloves are available? 23
 Metal Mesh, Leather, or Canvas Gloves ... 23
 Fabric and Coated Fabric Gloves .. 24
 Chemical- and Liquid-Resistant Gloves ... 24
 How do I make sure my employees properly use the equipment I have selected? 28

Body Protection ... 29
 When must I provide my employees with full body protection? 29
 If only part of the body faces potential injury, must I provide my employees with full body protection? .. 29
 From what material should protective clothing be made? 29
 How do I make sure employees properly use the body protection I provide? 30

Hearing Protection ... 31
 When must I provide hearing protection for my employees? 31
 Will earplugs reduce employee exposure to high noise levels? 31
 What if my employees are exposed to different levels of noise throughout the day? 31
 What kinds of devices protect against high noise levels? Is cotton sufficient as earplugs? 32
 If I provide my employees with hearing protection, can they work in areas with any level of noise for any period of time? ... 32
 Once I have selected equipment to protect my employees’ hearing, how do I make sure they use it properly? ... 32
 Once I have provided my employees with hearing protection and training in how to use it, how do I know that it is really protecting their hearing? ... 33

Summary .. 34

Other Sources of OSHA Assistance .. 35
 Safety and Health Program Management Guidelines 35
 State Programs ... 35
 Free On-Site Consultation ... 35
 Voluntary Protection Programs (VPP) .. 35
 Training and Education .. 36
 Electronic Information .. 36
 Emergencies ... 36
States with Approved Plans .. 37
OSHA Consultation Project Directory .. 39
Other Relevant Addresses ... 44
OSHA Area Offices ... 45
OSHA Regional Offices ... 51

LIST OF CHECKLISTS
Checklist A: Establishing a PPE Program .. 2
Checklist B: Need for PPE ... 5
Checklist C: Use and Care of Eye and Face Protection .. 14
Checklist D: Use and Care of Head Protection ... 19
Checklist E: Use and Care of Foot and Leg Protection ... 22
Checklist F: Use and Care of Hand and Arm Protection ... 28
Checklist G: Use and Care of Body Protection .. 30
Checklist H: Use and Care of Hearing Protection .. 33

LIST OF TABLES
Table 1. Eye and Face Protector Selection Guide ... 10
Table 2. Filter Lense for Protection Against Radiant Energy .. 11
Table 3. Selecting Laser Safety Glasses .. 12
Table 4. Glove Chemical Resistance Selection Chart ... 25
Table 5. Permissible Noise Exposures ... 31

LIST OF FIGURES
Figure 1. Recommended Eye and Face Protectors ... 13
Figure 2. Hard Hat .. 16
Figure 3. Safety Shoes .. 21
Who should read this guide?

If you employ one or more persons, you should read this guide.

How will this guide help protect my employees?

The Occupational Safety and Health Administration (OSHA) requires employers to protect their employees from workplace hazards such as machines, work procedures, and hazardous substances that can cause injury. The preferred way to do this is through engineering controls or work practice and administrative controls, but when these controls are not feasible or do not provide sufficient protection, an alternative or supplementary method of protection is to provide workers with personal protective equipment (PPE) and the know-how to use it properly.

This guide will help you to

• Examine your workplace,
• Review the work procedures you require your employees to follow,
• Select appropriate PPE (except for respirators and insulating rubber equipment) to protect your employees, and
• Teach your employees how to wear and care for the PPE you provide.

This guide will help you comply with OSHA’s general PPE requirements, but it is not a substitute for OSHA standards requiring PPE (Title 29, Code of Federal Regulations [CFR] 1910.132).* This standard requires employers to establish general procedures, called a PPE program, to give employees necessary protective equipment and to train them to use it properly. Respirators and insulating devices are not included in this guide because OSHA requires employers to develop separate programs specifically addressing the issues associated with those types of protective devices (29 CFR 1910.134 and 29 CFR 1910.137, respectively). Although not specifically directed to construction and maritime industry, the information, methods, and procedures in this guide are also applicable to, and will help you comply with, OSHA’s general PPE requirements for the construction industry at 29 CFR 1926.95 and for the maritime industry at 29 CFR 1915.152.

Although the checklists and other information presented in this guide are intended to help you to the greatest extent possible, please keep in mind that this publication is general in nature and does not address all workplace hazards or PPE requirements.

What is personal protective equipment?

Personal protective equipment, or PPE, includes a variety of devices and garments to protect workers from injuries. You can find PPE designed to protect

• Eyes,
• Face,
• Head,
• Ears,
• Feet,
• Hands and arms, and
• Whole body.

PPE includes such items as

• Goggles,
• Face shields,
• Safety glasses,
• Hard hats,
• Safety shoes,
• Gloves,
• Vests,
• Earplugs, and
• Earmuffs.

*To obtain copies of the CFR, see the order form at the end of this publication.
Respirators and rubber insulating equipment (gloves, sleeves, blankets) are also considered PPE, but because OSHA has specific requirements for those kinds of PPE, this general guide does not address such equipment. For assistance in determining the need for and the appropriate choice of respiratory protection for your employees, see OSHA Instruction CPL 2-2.54, *Respiratory Protection Program Manual.*

What is a PPE program?

This program sets out procedures for selecting, providing, and using PPE as part of your routine operation. A written PPE program is easier to establish and maintain as company policy and easier to evaluate than an unwritten one.

How do I develop a PPE program for my company?

You have already begun to establish a PPE program by thinking about how best to protect your employees from potential hazards. Use Checklist A for information on establishing a PPE program. Working through the PPE selection process in this guide will produce the foundation for your program. Then you will need to decide how to enforce PPE use at your facility, provide for any required medical examinations, and evaluate your PPE program.

Checklist A: Establishing a PPE Program

- Identify steps taken to assess potential hazards in every employee’s work space and in workplace operating procedures
- Identify appropriate PPE selection criteria
- Identify how you will train employees on the use of PPE, including
 - What PPE is necessary
 - When PPE is necessary
 - How to properly inspect PPE for wear or damage
 - How to properly put on and adjust the fit of PPE
 - How to properly take off PPE
 - The limitations of the PPE
 - How to properly care for and store PPE
- Identify how you will assess employee understanding of PPE training
- Identify how you will enforce proper PPE use
- Identify how you will provide for any required medical examinations
- Identify how and when to evaluate the PPE program

CPL 2-2.54, 2/10/1992, on http://www.osha-slc.gov/. See Other OSHA Documents, at http://www.osha.gov/ or contact your nearest OSHA regional or area office listed at the end of this publication.
Who must provide PPE?

You must provide PPE for your employees if

- Their work environment presents a hazard or is likely to present a hazard to any part of their bodies;

 OR

- Their work processes present a hazard or are likely to present a hazard to any part of their bodies;

 OR

- During their work, they might come into contact with hazardous chemicals, radiation, or mechanical irritants;

 AND

- You are unable to eliminate their exposure or potential exposure to the hazard by engineering, work practice, or administrative controls.

How do I identify potential hazards in my workplace?

Begin with a survey of your workplace. Observe the environment in which your employees work. Ask employees how they perform their tasks. Look for sources of potential injury such as the following:

- Objects that might fall from above.
- Exposed pipes or beams at work level.
- Exposed liquid chemicals.
- Sources of heat, intense light, noise, or dust.
- Equipment or materials that could produce flying particles.

Checklist B at the end of this section will help you conduct this survey.

I have identified potential hazards. Now what?

Determine if there are feasible engineering and work practice controls that could be used to avoid hazards.

What are work practice and engineering controls?

These controls can be described by the following examples once you’ve identified a potential hazard on a machine or in the room in which your employees work

<table>
<thead>
<tr>
<th>If...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>You can physically change the machine or work environment to prevent employee exposure to the potential hazard (adding a guard to the machine or building a barrier in the room between employees and the hazard).</td>
<td>You have eliminated the hazard with an engineering control.</td>
</tr>
<tr>
<td>You can remove your employees from exposure to the potential hazard by changing the way they do their jobs.</td>
<td>You have eliminated the hazard with a work practice control.</td>
</tr>
</tbody>
</table>

Employers should institute all feasible engineering, work practice, and administrative controls to eliminate or reduce hazards before using PPE to protect employees against hazards.
All feasible engineering and work practice controls are in place, but my employees are still exposed to potential hazards. Is now the time to provide PPE?

Yes. You must examine each likely hazard very carefully and determine the nature of the threat the hazard poses to your employees. Then choose the appropriate PPE for protection against that hazard, and make sure that any PPE you choose will fit the employee(s) who must wear it. Next, train your employees in the proper use and care of the PPE you provide.

How do I get started assessing my workplace operations for PPE needs?

Use Checklist B to assess the work environment and procedures. Keep in mind, though, that this is not an exhaustive list of operations that could cause injury. Many workplace operations create hazards; all of them could not be listed here. If you don’t find a specific task on the checklist

- Look for similarities between your workplace operations and those listed here
- Try to anticipate whether such operations also might create similar hazards, and
- Remember, an operation need only have the potential to cause injury to require PPE.

Once you have identified the tasks that require PPE, read the specific sections in the checklist to help you choose the appropriate PPE for your employees.

Machine Shop

In a machine shop, a milling operation produces large quantities of metal chips that fly all over the surrounding work areas. Recognizing that flying metal chips were a potential hazard to employees in the surrounding areas, the machine shop owner had to decide how best to protect the workers.

Option 1—PPE:

Provide employees with safety goggles or safety glasses with side shields.

Option 2—Engineering and administrative controls:

Enclose the milling operation or install a deflector to contain the metal chips and prevent them from flying into the surrounding areas (engineering control).

Operate the machine only at certain times of the day when adjacent operations have stopped (administrative/work practice control).

Option 2 is more effective since enclosing the operation will eliminate the hazard of flying metal chips. Providing a deflector will contain most, if not all, of the flying chips. In a machine shop, however, safety glasses should also be required for added protection.
Checklist B: Need for PPE

<table>
<thead>
<tr>
<th>Suggested Questions</th>
<th>Typical Operations of Concern</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eyes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do employees perform tasks, or work near employees who perform tasks, that might produce airborne dust or flying particles?</td>
<td>Sawing, cutting, drilling, sanding, grinding, hammering, chopping, abrasive blasting, and punch press operations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do your employees handle, or work near employees who handle, hazardous liquid chemicals or encounter blood splashes?</td>
<td>Pouring, mixing, painting, cleaning, syphoning, dip tank operations, and dental and health care services.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are your employees’ eyes exposed to other potential physical or chemical irritants?</td>
<td>Battery charging, installing fiberglass insulation, and compressed air or gas operations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are your employees exposed to intense light or lasers?</td>
<td>Welding, cutting, and laser operations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Face</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do your employees handle, or work near employees who handle, hazardous liquid chemicals?</td>
<td>Pouring, mixing, painting, cleaning, syphoning, and dip tank operations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are your employees’ faces exposed to extreme heat?</td>
<td>Welding, pouring molten metal, smithing, baking, cooking, and drying.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are your employees’ faces exposed to other potential irritants?</td>
<td>Cutting, sanding, grinding, hammering, chopping, pouring, mixing, painting, cleaning, and syphoning.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Might tools or other objects fall from above and strike your employees on the head?</td>
<td>Work stations or traffic routes located under catwalks or conveyor belts, construction, trenching, and utility work.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Checklist B: Need for PPE (continued)

<table>
<thead>
<tr>
<th>Suggested Questions</th>
<th>Typical Operations of Concern</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>When your employees stand or bend, are their heads near exposed beams, machine parts, or pipes?</td>
<td>Construction, confined space operations, and building maintenance.</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Do your employees work with or near exposed electrical wiring or components?</td>
<td>Building maintenance; utility work; construction; wiring; work on or near communications, computer, or other high-tech equipment; and arc or resistance welding.</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Feet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Could tools, heavy equipment, or other objects roll, fall onto, or strike your employees’ feet?</td>
<td>Construction, plumbing, smithing, building maintenance, trenching, utility work, and grass cutting.</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Do your employees work with or near exposed electrical wiring or components?</td>
<td>Building maintenance; utility work; construction; wiring; work on or near communications, computer, or other high-tech equipment; and arc or resistance welding.</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Do your employees work with explosives or in explosive atmospheres?</td>
<td>Demolition, explosives manufacturing, grain milling, spray painting, abrasive blasting, and work with highly flammable materials</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Hands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do your employees’ hands come into contact with tools or materials that might scrape, bruise, or cut?</td>
<td>Grinding, sanding, sawing, hammering, and material handling.</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Do your employees handle chemicals that might irritate skin, or come into contact with blood?</td>
<td>Pouring, mixing, painting, cleaning, syphoning, dip tank operations, and health care and dental services.</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Do work procedures require your employees to place their hands and arms near extreme heat?</td>
<td>Welding, pouring molten metal, smithing, baking, cooking, and drying.</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
Checklist B:
Need for PPE (continued)

<table>
<thead>
<tr>
<th>Suggested Questions</th>
<th>Typical Operations of Concern</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are your employees’ hands and arms placed near exposed electrical wiring or components?</td>
<td>Building maintenance; utility work; construction; wiring; work on or near communications, computer, or other high-tech equipment; and arc or resistance welding.</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Body</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are your employees’ bodies exposed to irritating dust or chemical splashes?</td>
<td>Pouring, mixing, painting, cleaning, syphoning, dip tank operations, machining, sawing, battery charging, installing fiberglass insulation, and compressed air or gas operations.</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Are your employees’ bodies exposed to sharp or rough surfaces?</td>
<td>Cutting, grinding, sanding, sawing, glazing, and material handling.</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Are your employees’ bodies exposed to extreme heat?</td>
<td>Welding, pouring molten metal, smithing, baking, cooking, and drying.</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Are your employees’ bodies exposed to acids or other hazardous substances?</td>
<td>Pouring, mixing, painting, cleaning, syphoning, and dip tank operations.</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Ears/Hearing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are your employees exposed to loud noise from machines, tools, or music systems?</td>
<td>Machining, grinding, sanding, work near conveyors, pneumatic equipment, generators, ventilation fans, motors, and punch and brake presses.</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
When must I provide eye protection for employees?

You must provide eye protection for employees whenever they are exposed to potential eye injuries during their work if work practice or engineering controls do not eliminate the risk of injury. Some of the things that might cause eye injuries include the following:

- Dust and other flying particles, such as metal shavings or wool fibers.
- Molten metal that might splash.
- Acids and other caustic liquid chemicals that might splash.
- Blood and other potentially infectious body fluids that might splash, spray, or splatter.
- Intense light such as that created by welding arcs and lasers.

How do I select the proper protective eyewear for employees?

Begin with the following criteria:

- Eye protection must protect against the specific hazard(s) encountered in the workplace.
- It must be reasonably comfortable to wear.
- Eye protection must not restrict vision or movement.
- Eye protection must be durable and easy to clean and disinfect.
- Eye protection must not interfere with the function of other required PPE.

In addition, the American National Standards Institute, Inc. (ANSI)* has issued standard requirements for the design, construction, testing, and use of protective devices for eyes and face.

OSHA requires that all protective eyewear you purchase for your employees meet the requirements of ANSI Z87.1-1989 for devices purchased after July 5, 1994, and ANSI Z87.1-1968 for devices purchased before that date.**

If employees wear eyeglasses with prescription lenses, may I consider these eye protection?

No. Eyeglasses designed for ordinary wear do not provide the level of protection necessary to protect against workplace hazards. Special care must be taken when choosing eye protectors for employees who wear eyeglasses with corrective lenses such as the following:

- Prescription spectacles, with side shields and protective lenses meeting the requirements of ANSI Z87.1, that also correct the individual employee’s vision.
- Goggles that can fit comfortably over corrective eyeglasses without disturbing the alignment of the eyeglasses.
- Goggles that incorporate corrective lenses mounted behind protective lenses.

You also must provide protective eyewear to employees who wear contact lenses and are exposed to potential eye injury. Eye protection provided to these employees may also incorporate corrective eyeglasses. Thus, if an employee must don eyeglasses in the event of contact lens failure or loss, he or she will still be able to use the same protective eyewear.

What kind of eye and face protectors are there? What are they for?

- Safety spectacles. These protective eyeglasses are made with safety frames constructed of metal and/or plastic and are fitted with either corrective or plano impact-resistant lenses. They come with and without side shields, but most workplace operations will require side shields.
- Impact-resistant spectacles. This eyewear can be used for moderate impact from particles produced by such jobs as carpentry, woodworking, grinding, and scaling.
- Side shields. These protect against particles that might enter the eyes from the side. Side shields are made of wire mesh or plastic. Eye-cup type side shields provide the best protection.

*ANSI, 11 West 42nd St., New York, NY 10035.
**ANSI, Z87.1, Occupational and Educational Eye and Face Protection.
• **Goggles.** You may choose from many different types of goggles, each designed for specific hazards. Generally, goggles protect eyes, eye sockets, and the facial area immediately surrounding the eyes from impact, dust, and splashes. Some goggles fit over corrective lenses.

• **Welding shields.** Constructed of vulcanized fiber or fiberglass and fitted with a filtered lens, these protective devices are designed for the specific hazards associated with welding. Welding shields protect your employees’ eyes from burns caused by infrared or intense radiant light, and they protect face and eyes from flying sparks, metal spatter, and slag chips produced during welding, brazing, soldering, and cutting. See Table 1 for assistance in choosing the appropriate filter for your employees’ tasks.

• **Laser safety goggles.** Laser safety goggles provide a range of protection against the intense concentrations of light produced by lasers. The type of laser safety goggles you choose will depend upon the equipment and operating conditions in your workplace. Table 2 of this document and Chapter II:6, “Laser Hazards,” in the *OSHA Technical Manual* will help you select the appropriate protection for your employees.

• **Face shields.** These transparent sheets of plastic extend from the brow to below the chin across the entire width of the employee’s head. Some are polarized for glare protection. Choose face shields to protect your employees’ faces from nuisance dusts and potential splashes or sprays of hazardous liquids.

Table 1. Eye and Face Protector Selection Guide

<table>
<thead>
<tr>
<th>Operation</th>
<th>Hazards</th>
<th>Recommended protectors: (numbers refer to Figure 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylene-burning, acetylene-cutting, acetylene-welding</td>
<td>Sparks, harmful rays, molten metal, flying particles</td>
<td>7,8,9</td>
</tr>
<tr>
<td>Chemical handling</td>
<td>Splash, acid burns, fumes</td>
<td>2,10 (for severe exposure add 10 over 2)</td>
</tr>
<tr>
<td>Chipping</td>
<td>Flying particles</td>
<td>1,3,4,5,6,7A,8A</td>
</tr>
<tr>
<td>Electric (arc) welding</td>
<td>Sparks, intense rays, molten metal</td>
<td>9,11 (11 in combination with 4,5,6 in tinted lenses advisable)</td>
</tr>
<tr>
<td>Furnace operations</td>
<td>Glare, heat, molten metal</td>
<td>7,8,9 (for severe exposure add 10)</td>
</tr>
<tr>
<td>Grinding - light</td>
<td>Flying particles</td>
<td>1,3,4,5,6,10</td>
</tr>
<tr>
<td>Grinding - heavy</td>
<td>Flying particles</td>
<td>1,3,7A,8A (for severe exposure add 10)</td>
</tr>
<tr>
<td>Laboratory</td>
<td>Chemical splash, glass breakage</td>
<td>2 (10 when in combination with 4,5,6)</td>
</tr>
<tr>
<td>Machining</td>
<td>Flying particles</td>
<td>1,3,4,5,6,10</td>
</tr>
<tr>
<td>Molten metals</td>
<td>Heat, glare, sparks, splash</td>
<td>7,8 (10 in combination with 4,5,6 in tinted lenses)</td>
</tr>
<tr>
<td>Spot welding</td>
<td>Flying particles, sparks</td>
<td>1,3,4,5,6,10</td>
</tr>
</tbody>
</table>

Source: 29 CFR 1926.102(a)(5)

How dark do lenses on welding helmets and goggles need to be?

The intensity of light or radiant energy produced by welding, cutting, or brazing operations varies according to a number of factors including the task producing the light, the electrode size, and the arc current. Table 2 shows the minimum protective shade for a variety of welding, cutting, and brazing operations. To protect employees who are exposed to intense radiant energy, begin by selecting a shade too dark to see the welding zone. Then try lighter shades until you find one that allows a sufficient view of the welding zone without going below the minimum protective shade.
Table 2.
Filter Lenses for Protection Against Radiant Energy

<table>
<thead>
<tr>
<th>Operations</th>
<th>Electrode size in 1/32" (0.8mm)</th>
<th>Arc current</th>
<th>Minimum* protective shade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shielded metal arc welding</td>
<td><3</td>
<td><60</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3-5</td>
<td>60-160</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>5-8</td>
<td>160-250</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>>8</td>
<td>250-550</td>
<td>11</td>
</tr>
<tr>
<td>Gas metal-arc welding and flux-cored arc welding</td>
<td><60</td>
<td>60-160</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>160-250</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>250-500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas tungsten-arc welding</td>
<td><50</td>
<td>50-150</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>150-500</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Air carbon arc cutting</td>
<td>(light)</td>
<td><500</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>(heavy)</td>
<td>500-1,000</td>
<td>11</td>
</tr>
<tr>
<td>Plasma arc welding</td>
<td><20</td>
<td>20-100</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>100-400</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400-800</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Plasma arc cutting</td>
<td>(light)**</td>
<td><300</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>(medium)**</td>
<td>300-400</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>(heavy)**</td>
<td>400-800</td>
<td>10</td>
</tr>
<tr>
<td>Torch blazing</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Torch soldering</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Carbon arc welding</td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Gas welding:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light</td>
<td><1/8</td>
<td><3.2</td>
<td>4</td>
</tr>
<tr>
<td>Medium</td>
<td>1/8-1/2</td>
<td>3.2-12.7</td>
<td>5</td>
</tr>
<tr>
<td>Heavy</td>
<td>>1/2</td>
<td>>12.7</td>
<td>6</td>
</tr>
<tr>
<td>Oxygen cutting:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light</td>
<td><1</td>
<td><25</td>
<td>3</td>
</tr>
<tr>
<td>Medium</td>
<td>1-6</td>
<td>25-150</td>
<td>4</td>
</tr>
<tr>
<td>Heavy</td>
<td>>6</td>
<td>>150</td>
<td>5</td>
</tr>
</tbody>
</table>

Source: 29 CFR 1910.133(a)(5).

*As a rule of thumb, start with a shade that is too dark to see the weld zone. Then go to a lighter shade which gives sufficient view of the weld zone without going below the minimum. In oxyfuel gas welding or cutting where the torch produces a high yellow light, it is desirable to use a filter lens that absorbs the yellow or sodium line in the visible light of the (spectrum) operation.

**These values apply where the actual arc is clearly seen. Experience has shown that lighter filters may be used when the arc is hidden by the workpiece.
How do I protect employees from exposure to laser beams?

You must provide safety goggles specifically designed to protect the employees’ eyes from the specific intensity of light produced by the laser. The level of protection will vary according to the level of radiation emitted by the laser. If your employees are exposed to laser beams, you must determine the maximum power density, or intensity, that the lasers can produce. Based on this knowledge, you must select lenses that will protect against this maximum intensity. Table 3 shows the minimum optical density of lenses required for various laser intensities. Employers with lasers emitting radiation between two measures of power density (or light blocking capability) must provide lenses that offer protection against the higher of the two intensities.

Table 3.
Selecting Laser Safety Glass

<table>
<thead>
<tr>
<th>Intensity, CW maximum power density (watts/cm²)</th>
<th>Optical density (O.D.)</th>
<th>Attenuation factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-2}</td>
<td>5</td>
<td>10^5</td>
</tr>
<tr>
<td>10^{-1}</td>
<td>6</td>
<td>10^6</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>10^7</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>10^8</td>
</tr>
</tbody>
</table>

Source: 29 CFR 1926.102(b)(2)(i)

The manufacturer usually provides this information on the laser.
Eye and face protectors are identified below by number and type. Refer to Table 1 for recommended usage applications.

1. **Goggles**, flexible fitting, regular ventilation
2. **Goggles**, flexible fitting, hooded ventilation
3. **Goggles**, cushioned fitting, rigid body
4. **Spectacles**, metal frame, with side shields*
5. **Spectacles**, plastic frame, with side shields*
6. **Spectacles**, metal-plastic frame, with flatfold side shields*
7. **Welding Goggles**, eyecup type, tinted lenses**
7A. **Chipping Goggles**, eyecup type, clear safety lenses (not illustrated)
8. **Welding Goggles**, coverspec type, tinted lens**
8A. **Chipping Goggles**, coverspec type, clear safety lenses (not illustrated)
9. **Welding Goggles**, coverspec type, tinted plate lens**
10. **Face Shield** (available with plastic or mesh window, tinted/transparent)
11. **Welding Helmets**

Source: 29 CFR 1926.102 (a)(5) Table E-1.

*These are also available without side shields for limited use requiring only frontal protection.

** See Table 2, Filter Lenses for Protection Against Radiant Energy.
How can I be sure that laser safety goggles provide enough protection?

Every pair of safety goggles intended for use with laser beams must bear a label with the following information:

- The laser wavelengths for which they are intended to be used.
- The optical density of those wavelengths.
- The visible light transmission.

Once I have selected the appropriate eye-protection equipment, how do I make sure employees use it properly?

Train your employees to use the protective eyewear. Checklist C will help you prepare your employees to use and care for the eye protection you provide.

Checklist C:
Use and Care of Eye and Face Protection

Train your employees to know...

- Why eye protection is necessary—i.e., the workplace hazards that threaten their eyes
- How the eye protection will protect them
- The limitations of the eye protection
- When they must wear the eye protectors
- How to put the protective eyewear on properly
- How to adjust straps and other parts for a comfortable and effective fit
- How the protective eyewear fits over or contains an employee’s corrective lenses
- How to identify signs of wear such as
 - Chipped, scratched, or scraped lenses
 - Loss of elasticity or fraying of head bands
- How to clean and disinfect the safety eyewear
My workplace gets pretty dirty. How will my employees keep their protective eyewear clean and effective?

Train your employees how to clean the eye protectors. Allow them time at the end of their shifts to do the following:

- Disassemble goggles or spectacles,
- Thoroughly clean all parts with soap and warm water,
- Carefully rinse off all traces of soap, and
- Replace all defective parts.

Occasionally, you must disinfect the protective eyewear. To do so, after cleaning you can do the following:

- Immerse and swab all parts for 10 minutes in a germicidal solution.
- Remove all parts from the solution and hang in a clean place to air dry at room temperature or with heated air.
- Do not rinse the parts after submerging them in the disinfectant. Rinsing will remove the germicidal residue that remains after drying.
- You may also use ultraviolet disinfecting and spray-type disinfecting solutions after washing.

My employees work in shifts. Could I provide one pair of protective eyewear for each position instead of each employee?

Yes. If you do this, however, you must disinfect shared protective eyewear after each use. If the goggles or spectacles do not have to be individually designed to incorporate an employee’s corrective lenses and you disinfect the eyewear between uses by different employees, more than one employee may use the same set of protective eyewear.

If a Wood Chip Chips...

Eight employees work four at a time during two shifts in a custom woodworking shop. During the course of their shifts, the employees might saw, lathe, sand, and finish wood.

Before beginning shop operations, their employer conducted a hazard assessment and determined that flying sawdust and wood chips presented an impact hazard to workers’ eyes. In addition, stains, polyurethane finishes, and liquid waxes might splash into employees’ eyes.

The employer purchased four flexible-fitting, ventilated goggles to be shared by employees on different shifts. The employer trained each employee to use and care for the goggles and required the employees to wear them when in the shop. In addition, the employer made face shields available for employee comfort and added protection.

During the final 15 minutes of each shift, employees wash the goggles they wore in warm water and soap. After rinsing the goggles clean, the employees douse them in disinfecting solution for 10 minutes and then place them under a blower to dry before the next shift arrives to don the goggles.
When do my employees need head protection?

You must provide head protection for your employees if:

• Objects might fall from above and strike them on the head;
• They might bump their heads against fixed objects, such as exposed pipes or beams; or
• They work near exposed electrical conductors.

What should I look for in head protection?

In general, protective helmets, or hard hats, should

• Resist penetration by objects,
• Absorb the shock of a blow,
• Be water resistant and slow burning, and
• Come with instructions explaining proper adjustment and replacement of the suspension and headband.

Hard hats require a hard outer shell and a shock-absorbing lining. The lining should incorporate a head band and straps that suspend the shell from 1 to 1 1/4 inches (2.54 cm to 3.18 cm) away from the user’s head. This design provides shock absorption during impact and ventilation during wear.

Figure 2. Hard Hat

As with devices designed to protect eyes, the design, construction, testing, and use of protective helmets must meet standards established by ANSI. Protective helmets purchased after July 5, 1994, must comply with ANSI Z89.1-1986,* whereas, those purchased before this date must meet the ANSI Z89.1-1969 standard.

What types of head protection are available?

Hard hats are divided into three industrial classes:

• **Class A.** These helmets are for general service. They provide good impact protection but limited voltage protection. They are used mainly in mining, building construction, shipbuilding, lumbering, and manufacturing.
• **Class B.** Choose Class B helmets if your employees are engaged in electrical work. They protect against falling objects and high-voltage shock and burns.
• **Class C.** Designed for comfort, these lightweight helmets offer limited protection. They protect workers from bumping against fixed objects but do not protect against falling objects or electric shock.

Look at the inside of any protective helmet you are considering for your employees, and you should see a label showing the manufacturer’s name, the ANSI standard it meets, and its class. *Figure 2* shows the basic design of hard hats.

ANSI Z89.1, Protective Headwear for Industrial Workers.
The Sky is Falling...

An employer contracted with cable television providers to string coaxial cable on utility poles. The employer hired work crews of two. Generally, one employee worked aloft in an aerial lift, or cherry picker, while the other employee worked at ground level. Employees alternated these tasks.

The employer’s assessment determined that, among other hazards, certain aspects of the work posed a potential for head injuries. Ground-level employees risked being struck by falling tools from the work basket above, as well as from the basket and the lift boom when they maneuvered into position. Employees aloft risked impact with utility poles and high-voltage electrical transformers.

Employees with long hair faced additional hazards. On the ground, long hair could get tangled in lift machinery. On the lift, the wind could blow long hair and tangle it with cables and electrical hazards.

To protect employees’ heads, the employer provided Class B hard hats. These helmets protect against impact and contact with electrical hazards. The employer also issued bandanas of sufficient size to cover the long hair of employees.

As part of initial training, the employer introduced all new employees to the reasons why they must wear hard hats and the procedures for the proper care and maintenance of the hard hats. In addition, the employer periodically reviews these procedures with employees during refresher training sessions.

How do I choose the correct protective helmets from among the different types?

Each kind of protective helmet is designed to protect against specific hazards. By completing the hazard assessment outlined above, you will identify the specific workplace hazards that pose a threat to your employee’s head.

I have purchased new hard hats that meet the ANSI requirements. Have I fulfilled my responsibility to protect my employees’ heads?

No. Issuing appropriate head protection to employees is a major first step, but you must make sure that the hard hats continue to provide sufficient protection to your employees. Do this by training your employees in the proper use and maintenance of hard hats including daily inspection of them. If your employees identify any of the following defects, remove the hard hats from service:

• The suspension system shows signs of deterioration such as:
 – Cracking,
 – Tearing, or
 – Fraying.

• The suspension system no longer holds the shell from 1 inch to 1 1/4 inches (2.54cm - 3.18cm) away from the employee’s head.

• The brim or shell is cracked, perforated, or deformed.

• The brim or shell shows signs of exposure to heat, chemicals, ultraviolet light, or other radiation. Such signs include:
 – Loss of surface gloss,
 – Chalking, or
 – Flaking (a sign of advanced deterioration).
Could employees wearing hard hats and working at elevations create a potential hazard for the employees working below?

To protect employees working below, you must provide chin straps for the protective helmets worn by employees working at higher elevations, whether in an aerial lift or at the edge of a pit. The chin straps should be designed to prevent the hard hats from being bumped off the employees’ heads.

Can I require employees to cut their hair if it is long enough to get tangled in machinery?

Long hair (longer than four inches) can be drawn into machine parts such as chains, belts, rotating devices, suction devices, and blowers. Hair may even be drawn into machines otherwise guarded with mesh. Although you need not require your employees to cut their hair, you must require them to cover and protect their hair with bandanas, hair nets, turbans, soft caps, or the like. These items, however, must not themselves present a hazard.

Once I have selected helmets to protect my employees’ heads, how do I make sure they use them properly?

Train your employees to use the hard hats. Checklist D will help you instruct your employees to use and care for the head protection you provide.

How do I make sure that the hard hats I provide will be kept in good condition?

You must train your employees to maintain and care for the head protection. Your training communicates the importance of wearing head protection and taking proper care of it. Important information you will want to consider when training employees on how to care for their hard hats includes the following:

- Paints, paint thinners, and some cleaning agents can weaken the shell of the hard hat and may eliminate electrical resistance. Consult the helmet manufacturer for information on the effects of paint and cleaning materials on their hard hats. Keep in mind that paint and stickers can also hide signs of deterioration in the hard hat shell. Limit their use.
- Ultraviolet light and extreme heat, such as that generated by sunlight, can reduce the strength of the hard hats. Therefore, employees should not store or transport hard hats on the rear-window shelves of automobiles or otherwise in direct sunlight.

Also, instruct employees to clean the protective helmets periodically by:

- Immersing for one minute in hot (approximately 140° F, or 60° C) water and detergent,
- Scrubbing, and
- Rinsing in clear hot water.
Checklist D:
Use and Care of Head Protection

Train your employees to know...

- Why head protection is necessary—i.e., the workplace hazards threatening their heads
- How the head protection will protect them
- The limitations of the head protection
- When they must wear the head protection
- How to wear the protective head gear properly
- How to adjust straps and other parts for a comfortable and effective fit
- How to identify signs of wear, such as
 - Cracked, torn, frayed, or otherwise deteriorated suspension systems
 - Deformed, cracked, or perforated brims or shells
 - Flaking, chalking, or loss of surface gloss
- How to clean and disinfect the hard hats you provide for them.
Foot and Leg Protection

When must I provide foot and leg protection?

You must provide foot and leg protection if your workplace hazard assessment reveals potential dangers to these parts of the body. Some of the potential hazards you might identify include the following:

• Heavy objects such as barrels or tools that might roll onto or fall on employees’ feet.
• Sharp objects such as nails or spikes that might pierce the soles or uppers of ordinary shoes.
• Molten metal that might splash on feet or legs.
• Hot or wet surfaces.
• Slippery surfaces.

What are the types of protection and where do I use them?

The type of foot and leg protection you provide your employees will depend upon the specific workplace hazards you identify and the specific parts of the feet or legs exposed to potential injury. Safety footwear must meet minimum compression and impact performance standards and testing requirements established by ANSI. Protective footwear purchased after July 5, 1994, must meet the requirements of ANSI Z41-1991.* Protective footwear bought before that date must comply with ANSI Z41-1967. Foot and leg protection choices includes the following:

• **Leggings.** Use these to protect the lower legs and feet from heat hazards, like molten metal or welding sparks. Safety snaps allow leggings to be removed quickly.
• **Metatarsal guards.** Made of aluminum, steel, fiber, or plastic, these guards may be strapped to the outside of shoes to protect the instep area from impact and compression.
• **Toe guards.** Toe guards may be made of steel, aluminum, or plastic. They fit over the toes of regular shoes. These guards protect only the toes from impact and compression hazards.
• **Combination foot and shin guards.** These guards may be used in combination with toe guards when greater protection is needed.
• **Safety shoes.** These sturdy shoes have impact-resistant toes and heat-resistant soles that protect against hot work surfaces common in roofing, paving, and hot metal industries. The metal insoles of some safety shoes protect against puncture wounds. Safety shoes may also be designed to be electrically conductive to prevent the buildup of static electricity in areas with the potential for explosive atmospheres, or nonconductive to protect workers from workplace electrical hazards.

*A Shoe Thing…

A small foundry employs workers to cast metal rods. Although engineering controls and work practice procedures eliminated most employee exposure to molten metal, a hazard assessment conducted by the employer revealed that during pouring, spatters of the molten metal could reach employees’ legs and feet. In addition, the wheels of the material handling equipment that lift the rods pass near employee work areas and constitute a compression hazard to employees’ feet.

The employer provided employees with leggings and foundry shoes. The leggings fit over the shoes and provide protection against molten metal spatters to the employees’ legs, while the shoes keep the burning material from making contact with employees’ feet. The mandatory safety toes built into the foundry shoes provide protection against the possibility that heavy machinery could injure employees if it rolls onto their feet.

The employer also trained employees to use and care for the protective gear properly, according to the manufacturers’ instructions.

* ANSI Z41, Protective Footwear.
What should I look for when choosing safety shoes for my employees?

Generally, safety shoes must be sturdy and must have impact-resistant safety toes, instep protection, and heat-resistant soles (see Figure 3). All safety shoes must comply with the ANSI standard(s) mentioned above. In addition, depending on the types of worker exposures, you may need to provide specially designed safety shoes such as conductive or electrical-hazard safety shoes.

Conductive Shoes

Electrically conductive shoes protect against the buildup of static electricity. Essentially, these shoes ground the employees wearing them. Employees working in explosive and hazardous locations such as explosives manufacturing facilities or grain elevators must wear conductive shoes to reduce the risk of static electricity buildup on an employee’s body that could produce a spark and cause an explosion or fire. During training, employees must be instructed not to use foot powder or wear socks made of silk, wool, or nylon with conductive shoes. Foot powder insulates and retards the conductive ability of the shoes. Silk, wool, and nylon produce static electricity.

Conductive shoes are not general-purpose shoes and must be removed upon completion of the tasks for which they are required. Employees exposed to electrical hazards must never wear conductive shoes.

Electrical Hazard, Safety-Toe Shoes

Electrical hazard, safety-toe shoes are nonconductive and will prevent your employees’ feet from completing an electrical circuit to the ground. They can protect employees against open circuits of up to 600 volts in dry conditions. Electrical hazard,

<table>
<thead>
<tr>
<th>If your employees...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work near explosive or hazardous atmosphere.</td>
<td>You must provide them with conductive shoes.</td>
</tr>
<tr>
<td>Work near exposed electrical conductors or components.</td>
<td>You must provide them with electrical-hazard, safety-toe shoes.</td>
</tr>
<tr>
<td>Work with molten metal.</td>
<td>You must provide them with foundry shoes.</td>
</tr>
</tbody>
</table>

Figure 3. Safety Shoes

- Insulated against heat and cold. May also be waterproof and chemical resistant.
- To protect against slipperiness, oil, heat, chemicals, or electrical hazards, soles may be made of leather, rubber, or wood.
- Safety toe must meet standards for impact (objects falling on toe) and for compression (weight pressing on toe).
- Instep protection made of aluminum, steel, fiber, or plastic to protect the top of the foot and front of the ankle.
- Outline of instep protection showing position.
- Outline of top cap showing position.
safety-toe shoes should be used in conjunction with other insulating equipment and precautions to reduce or eliminate the potential for your employees’ bodies or parts of their bodies to provide a path for hazardous electrical energy. *Note:* Nonconductive footwear must not be used in explosive or hazardous locations; in such locations, electrically conductive shoes are required.

Train your employees to recognize that the insulating protection of electrical hazard, safety-toe shoes may be compromised if

- The shoe is wet,
- The rubber sole is worn through,
- Metal particles become embedded in the sole or heel, or
- Other parts of the employees’ bodies come into contact with conductive, grounded items.

Foundry Shoes

In addition to insulating your employees’ feet from the extreme heat of molten metal, foundry shoes prohibit hot metal from lodging in shoe eyelets, tongues, or other parts. These snug-fitting leather or leather-substitute shoes have leather or rubber soles and rubber heels. In addition, all foundry shoes must have built-in safety toes.

Once I have selected equipment to protect my employees’ feet and legs, how do I make sure they use it properly?

Train your employees to use the protective footwear. *Checklist E* will help you instruct your employees to use and care for the foot and leg protection you provide.

Checklist E: Use and Care of Foot and Leg Protection

Train your employees to know...

- Why foot or leg protection is necessary—i.e., the workplace hazards that threaten the feet or legs
- How the equipment you provide will protect your employees
- The limitations of the foot or leg protection
- When employees must wear the protective leggings, guards, or shoes
- How to properly put on the protective equipment
- How to adjust straps, laces, and other parts for a comfortable and effective fit

How to identify signs of wear such as

- Scuffed, cracked, or lacerated uppers
- Signs of separation between soles and uppers
- Holes or cracks in soles or heel
- Metal embedded in heels or soles of electrical hazard, safety-toe shoes
- How to clean and maintain the leg and foot protection you provide
When must I provide hand and arm protection?

If your workplace hazard assessment reveals that your employees risk injury to their hands and arms, and engineering and work practice controls do not eliminate the hazards, you must provide your employees with appropriate protection. The injuries you may need to guard against in your workplace include the following:

- Burns
- Bruises
- Abrasions
- Cuts
- Punctures
- Fractures
- Amputations
- Chemical exposures.

What kind of equipment is necessary to protect the hands and arms?

For many workplace operations, machine guards such as point-of-operation guards will be sufficient. For example, install a barrier that makes it impossible for employees to put their hands at the point where a table saw blade makes contact with the wood it cuts. For other hazardous operations, you may be able to institute work procedures that eliminate the risk of injury to your employees’ hands or arms. When such measures fail to eliminate the hazard, however, protective gloves will be the primary means of protecting employees’ hands. When the risk of injury includes the arm, protective sleeves, often attached to the gloves, may be appropriate.

Is there one kind of glove that will protect against all workplace hazards?

No. The nature of the hazard(s) and the operation to be performed will determine your selection of gloves. The variety of potential occupational hand injuries may make selecting the appropriate pair of gloves more difficult than choosing other protective equipment. Take care to choose gloves designed for the particular circumstances of your workplace.

What kinds of protective gloves are available?

Gloves made from a wide variety of materials are designed for virtually every workplace hazard. In general, however, they may be divided into four groups:

- Durable work gloves made of metal mesh, leather, or canvas.
- Fabric and coated fabric gloves.
- Chemical and liquid resistant gloves.
- Insulating rubber gloves.*

Metal Mesh, Leather, or Canvas Gloves

Sturdy gloves made from metal mesh, leather, or canvas provide protection against cuts, burns, and sustained heat.

- Leather gloves. Leather gloves protect against sparks, moderate heat, blows, chips, and rough objects. Welders in particular need the durability of higher-quality leather gloves.
- Aluminized gloves. These gloves usually are used for welding, furnace, and foundry work because they provide reflective and insulating protection against heat. Aluminized gloves require an insert made of synthetic materials that protect against heat and cold.
- Aramid fiber gloves. Aramid is a synthetic material that protects against heat and cold. Many glove manufacturers use aramid fiber to make gloves that are cut- and abrasive-resistant and wear well.
- Other synthetic materials. Several manufacturers make gloves with other synthetic fabrics that offer protection against heat and cold. In addition to protection against temperature extremes, gloves made with other synthetic materials are cut- and abrasive-resistant and may withstand some diluted acids. These materials do not stand up against alkalis and solvents.

*See 29 CFR 1910.137 for detailed requirements for the selection and use of insulating rubber gloves.
Fabric and Coated Fabric Gloves

These gloves are made of cotton or other fabric to provide varying degrees of protection.

- **Fabric gloves.** These gloves can protect against dirt, slivers, chafing, and abrasion. These gloves do not provide sufficient protection, however, to be used with rough, sharp, or heavy materials.

Adding a plastic coating to some fabric gloves strengthens them and makes them effective protection for a variety of tasks.

- **Coated fabric gloves.** Manufacturers normally make these gloves from cotton flannel with napping on one side. By coating the unnapped side with plastic, fabric gloves are transformed into general-purpose hand protection offering slip-resistant qualities. These gloves are used for tasks ranging from handling bricks and wire rope to handling chemical containers in laboratory operations. When selecting gloves to protect against chemical exposure hazards, always check with the manufacturer (or review the manufacturer’s product literature) to determine the gloves’ effectiveness against the specific chemicals and conditions in the workplace.

Chemical- and Liquid-Resistant Gloves

Gloves made of rubber (latex, nitrile, or butyl), plastic, or synthetic rubber-like material such as neoprene protect workers from burns, irritation, and dermatitis caused by contact with oils, greases, solvents, and other chemicals. The use of rubber gloves also reduces the risk of exposure to blood and other potentially infectious substances. Some common gloves used for chemical protection are described below. In addition, *Table 4* rates various gloves as protectors against specific chemicals and will help you select the most appropriate gloves to protect your employees.

- **Butyl rubber gloves.** These gloves protect against nitric acid, sulfuric acid, hydrofluoric acid, red fuming nitric acid, rocket fuels, and peroxide. Highly impermeable to gases, chemicals, and water vapor, butyl rubber gloves also resist oxidation and ozone corrosion. In addition, they resist abrasion and remain flexible at low temperatures.

- **Natural latex or rubber gloves.** The comfortable wear and pliability of latex gloves as well as their protective qualities make them a popular general-purpose glove. In addition to resisting abrasions caused by sandblasting, grinding, and polishing, these gloves protect workers’ hands from most water solutions of acids, alkalis, salts, and ketones. When selecting hand protection, you should be aware that latex gloves have caused allergic reactions in some individuals and thus may not be appropriate for all of your employees. Hypoallergenic gloves, glove liners, and powderless gloves are possible alternatives for individuals who are allergic to latex gloves.

- **Neoprene gloves.** These gloves have good pliability, finger dexterity, high density, and tear resistance which protect against hydraulic fluids, gasoline, alcohols, organic acids, and alkalis.

- **Nitrile rubber gloves.** These sturdy gloves provide protection from chlorinated solvents such as trichloroethylene and perchloroethylene. Although intended for jobs requiring dexterity and sensitivity, nitrile gloves stand up to heavy use even after prolonged exposure to substances that cause other gloves to deteriorate. In addition, nitrile gloves resist abrasions, punctures, snags, and tears.

Helping Hands...

An independent laboratory employs 25 chemists and technicians. The technicians handle small amounts of organic acids and solvents during tasks that require dexterity and accuracy. Lab coats provide sufficient protection to the technicians’ arms and bodies.

The employer supplies the technicians with neoprene gloves. The gloves allow employees full dexterity and are particularly good at protecting their hands from the acids.
Table 4.
Glove Chemical Resistance Selection Chart

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Neoprene gloves</th>
<th>Latex or rubber gloves</th>
<th>Butyl gloves</th>
<th>Nitrile latex gloves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde*</td>
<td>VG</td>
<td>G</td>
<td>VG</td>
<td>G</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>Acetone</td>
<td>G</td>
<td>VG</td>
<td>VG</td>
<td>P</td>
</tr>
<tr>
<td>Ammonium hydroxide</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>Amy acetate*</td>
<td>F</td>
<td>P</td>
<td>F</td>
<td>P</td>
</tr>
<tr>
<td>Aniline</td>
<td>G</td>
<td>F</td>
<td>F</td>
<td>P</td>
</tr>
<tr>
<td>Benzaldehyde*</td>
<td>F</td>
<td>F</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Benzene*</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>F</td>
</tr>
<tr>
<td>Butyl acetate</td>
<td>G</td>
<td>F</td>
<td>F</td>
<td>P</td>
</tr>
<tr>
<td>Butyl alcohol</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Carbon tetrachloride*</td>
<td>F</td>
<td>P</td>
<td>P</td>
<td>G</td>
</tr>
<tr>
<td>Castor oil</td>
<td>F</td>
<td>P</td>
<td>F</td>
<td>VG</td>
</tr>
<tr>
<td>Chlorobenzene*</td>
<td>F</td>
<td>P</td>
<td>F</td>
<td>P</td>
</tr>
<tr>
<td>Chloroform*</td>
<td>G</td>
<td>P</td>
<td>F</td>
<td>P</td>
</tr>
<tr>
<td>Chloronaphthalene</td>
<td>F</td>
<td>P</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Chromic acid (50%)</td>
<td>F</td>
<td>P</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Citric acid (10%)</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>Cyclohexanol</td>
<td>G</td>
<td>F</td>
<td>G</td>
<td>VG</td>
</tr>
<tr>
<td>Dibutyl phthalate*</td>
<td>G</td>
<td>P</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Diesel fuel</td>
<td>G</td>
<td>P</td>
<td>P</td>
<td>VG</td>
</tr>
<tr>
<td>Diisobutyl ketone</td>
<td>P</td>
<td>F</td>
<td>G</td>
<td>P</td>
</tr>
<tr>
<td>Dimethylformamide</td>
<td>F</td>
<td>F</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Dioctyl phthalate</td>
<td>G</td>
<td>P</td>
<td>F</td>
<td>VG</td>
</tr>
<tr>
<td>Dioxane</td>
<td>VG</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Epoxy resins, dry</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>Ethyl acetate*</td>
<td>G</td>
<td>F</td>
<td>G</td>
<td>F</td>
</tr>
<tr>
<td>Ethyl alcohol</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>Ethyl ether*</td>
<td>VG</td>
<td>G</td>
<td>VG</td>
<td>G</td>
</tr>
<tr>
<td>Ethylene dichloride*</td>
<td>F</td>
<td>P</td>
<td>F</td>
<td>P</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>Formic acid</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>Freon 11</td>
<td>G</td>
<td>P</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>Freon 12</td>
<td>G</td>
<td>P</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>Freon 21</td>
<td>G</td>
<td>P</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>Freon 22</td>
<td>G</td>
<td>P</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>Furfural*</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
</tbody>
</table>
Table 4. Glove Chemical Resistance Selection Chart (Continued)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Neoprene gloves</th>
<th>Latex or rubber gloves</th>
<th>Butyl gloves</th>
<th>Nitrile latex gloves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline, leaded</td>
<td>G</td>
<td>P</td>
<td>F</td>
<td>VG</td>
</tr>
<tr>
<td>Gasoline, unleaded</td>
<td>G</td>
<td>P</td>
<td>F</td>
<td>VG</td>
</tr>
<tr>
<td>Glycerin</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>Hexane</td>
<td>F</td>
<td>P</td>
<td>P</td>
<td>G</td>
</tr>
<tr>
<td>Hydrazine (65%)</td>
<td>F</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Hydrochloric acid</td>
<td>VG</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Hydrofluoric acid (48%)</td>
<td>VG</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Hydrogen peroxide (30%)</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Hydroquinone</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>F</td>
</tr>
<tr>
<td>Isooctane</td>
<td>F</td>
<td>P</td>
<td>P</td>
<td>VG</td>
</tr>
<tr>
<td>Kerosene</td>
<td>VG</td>
<td>F</td>
<td>F</td>
<td>VG</td>
</tr>
<tr>
<td>Ketones</td>
<td>V</td>
<td>VG</td>
<td>VG</td>
<td>P</td>
</tr>
<tr>
<td>Lacquer thinners</td>
<td>V</td>
<td>F</td>
<td>F</td>
<td>P</td>
</tr>
<tr>
<td>Lactic acid (85%)</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>Lauric acid (36%)</td>
<td>VG</td>
<td>F</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>Lineolic acid</td>
<td>VG</td>
<td>P</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>Linseed oil</td>
<td>VG</td>
<td>P</td>
<td>F</td>
<td>VG</td>
</tr>
<tr>
<td>Maleic acid</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>Methyl alcohol</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>Methylamine</td>
<td>F</td>
<td>F</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Methyl bromide</td>
<td>G</td>
<td>F</td>
<td>G</td>
<td>F</td>
</tr>
<tr>
<td>Methyl chloride*</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Methyl ethyl ketone*</td>
<td>G</td>
<td>G</td>
<td>VG</td>
<td>P</td>
</tr>
<tr>
<td>Methyl isobutyl ketone*</td>
<td>F</td>
<td>F</td>
<td>VG</td>
<td>P</td>
</tr>
<tr>
<td>Methyl methacrylate</td>
<td>G</td>
<td>G</td>
<td>VG</td>
<td>F</td>
</tr>
<tr>
<td>Monoethanolamine</td>
<td>VG</td>
<td>G</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>Morpholine</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>G</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>G</td>
<td>F</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>Napthas, alaphatic</td>
<td>VG</td>
<td>F</td>
<td>F</td>
<td>VG</td>
</tr>
<tr>
<td>Napthas, aromatic</td>
<td>G</td>
<td>P</td>
<td>P</td>
<td>G</td>
</tr>
<tr>
<td>Nitric acid*</td>
<td>G</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Nitric acid, red and white fuming</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Nitromethane (95.5%)*</td>
<td>F</td>
<td>P</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Nitropropane (95.5%)</td>
<td>F</td>
<td>P</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Octyl alcohol</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>Oleic acid</td>
<td>VG</td>
<td>F</td>
<td>G</td>
<td>VG</td>
</tr>
</tbody>
</table>
Table 4. Glove Chemical Resistance Selection Chart (Continued)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Neoprene gloves</th>
<th>Latex or rubber gloves</th>
<th>Butyl gloves</th>
<th>Nitrile latex gloves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxalic acid</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>Palmitic acid</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>Perchloric acid (60%)</td>
<td>VG</td>
<td>F</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Perchloroethylene</td>
<td>F</td>
<td>P</td>
<td>P</td>
<td>G</td>
</tr>
<tr>
<td>Petroleum distillates (naphtha)</td>
<td>G</td>
<td>P</td>
<td>P</td>
<td>VG</td>
</tr>
<tr>
<td>Phenol</td>
<td>VG</td>
<td>F</td>
<td>G</td>
<td>F</td>
</tr>
<tr>
<td>Phosphoric acid</td>
<td>VG</td>
<td>G</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>Potassium hydroxide</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>Propyl acetate</td>
<td>G</td>
<td>F</td>
<td>G</td>
<td>F</td>
</tr>
<tr>
<td>Propyl alcohol</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>Propyl alcohol (iso)</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>Sodium hydoxide</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>Styrene</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>F</td>
</tr>
<tr>
<td>Styrene (100%)</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>F</td>
</tr>
<tr>
<td>Sulfuric acid</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Tannic acid (65)</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>Tetrahydrofuran</td>
<td>P</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Toluene*</td>
<td>F</td>
<td>P</td>
<td>P</td>
<td>F</td>
</tr>
<tr>
<td>Toluene diisocyanate (TDI)</td>
<td>F</td>
<td>G</td>
<td>G</td>
<td>F</td>
</tr>
<tr>
<td>Trichloroethylene*</td>
<td>F</td>
<td>F</td>
<td>P</td>
<td>G</td>
</tr>
<tr>
<td>Triethanolamine (85%)</td>
<td>VG</td>
<td>G</td>
<td>G</td>
<td>VG</td>
</tr>
<tr>
<td>Tung oil</td>
<td>VG</td>
<td>P</td>
<td>F</td>
<td>VG</td>
</tr>
<tr>
<td>Turpentine</td>
<td>G</td>
<td>F</td>
<td>F</td>
<td>VG</td>
</tr>
<tr>
<td>Xylene*</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>F</td>
</tr>
</tbody>
</table>

*Limited service.

VG=Very Good; G=Good; F=Fair; P=Poor (not recommended).
How do I make sure my employees properly use the equipment I have selected?

Train your employees to use the protective gloves and sleeves. Checklist F will help you teach your employees how to use and care for the equipment.

Checklist F: Use and Care of Hand and Arm Protection

Train your employees to know…

- Why hand and arm protection is necessary—i.e., the workplace hazards that threaten their hands and arms.
- How the protective gloves and sleeves will protect them
- The limitation of the protective equipment you’ve supplied
- When they must wear the gloves and sleeves
- How to wear the protective gloves and sleeves properly
- How to ensure a comfortable and effective fit
- How to identify signs of wear, such as
 - Cracks, scrapes, or lacerations
 - Thinning or discoloration
 - Break through to the skin
- How to clean and disinfect the nondisposable protective gloves and sleeves
When must I provide my employees with full body protection?

You must provide body protection for employees if they are threatened with bodily injury of one kind or another while performing their jobs, and if engineering, work practice, and administrative controls have failed to eliminate these hazards. Workplace hazards that could cause bodily injury include the following:

- Intense heat
- Splashes of hot metals and other hot liquids
- Impacts from tools, machinery, and materials
- Cuts
- Hazardous chemicals
- Contact with potentially infectious materials, like blood
- Radiation.

If only part of the body faces potential injury, must I provide my employees with full body protection?

As with all protective equipment, protective clothing is available to protect against specific hazards. You need to provide personal protective equipment only for the parts of the body exposed to possible injury. Depending upon hazards in your workplace, you may need to provide your employees with one or more of the following:

- Vests
- Jackets
- Aprons
- Coveralls
- Surgical gowns
- Full body suits.

If your hazard assessment indicates that you must provide full body protection against toxic substances or harmful physical agents, you must:

- Inspect the clothing carefully,
- Ensure proper fit, and
- Make sure the protective clothing functions properly.

From what material should protective clothing be made?

Protective clothing comes in a variety of materials, each suited to particular hazards. Conduct your hazard assessment. Identify the sources of any possible bodily injury. Install any feasible engineering controls, and institute work practice controls to eliminate the hazards. If the possibility of bodily injury still exists, provide protective clothing constructed of material that will protect against the specific hazards in your workplace. Materials for protective clothing include the following:

- **Paperlike fiber.** Disposable suits made of this material provide protection against dust and splashes.

- **Treated wool and cotton.** Protective clothing made from treated wool and cotton adapts well to changing workplace temperatures and is comfortable as well as fire resistant. Treated cotton and wool clothing protects against dust, abrasions, and rough and irritating surfaces.

- **Duck.** This closely woven cotton fabric protects employees against cuts and bruises while they handle heavy, sharp, or rough materials.

- **Leather.** Leather protective clothing is often used against dry heat and flame.

- **Rubber, rubberized fabrics, neoprene, and plastics.** Protective clothing made from these materials protects against certain acids and other chemicals.

Be aware that different materials will protect against different chemical and physical hazards. When chemical or physical hazards are present, check with the clothing manufacturer to make sure that the material selected will provide protection from the specific chemical or physical hazards in your workplace.
Avoiding the Itch…

Among the services offered by a general contractor is the installation of fiberglass insulation. In addition to the hazards posed by airborne glass fibers from the insulation, fiberglass insulation irritates skin. Also, the insulation often is installed in attics during the summer heat.

The contractor provides employees with cotton gloves and long-sleeve cotton flannel shirts to wear while installing fiberglass insulation. The heavy cotton protects against the skin irritation while still providing as much breathability as possible.

The contractor also provides employers with respirators selected in accordance with applicable OSHA standards to protect against breathing fiberglass.

Checklist G: Use and Care of Body Protection

Train your employees to know…

- Why protective clothing is necessary—i.e., the workplace hazards that threaten their bodies
- How the protective clothing will protect them
- The limitation of the body protection
- When they must wear the protective clothing
- How to put on the protective clothing properly
- How to adjust parts for a comfortable and effective fit
- How to identify signs of wear, such as
 - Rips, tears, scuffs, and
 - Loss of elasticity in tight-fitting parts
- How to clean and disinfect the protective clothing
When must I provide hearing protection for my employees?

Determining the need to provide hearing protection can be tricky. Employee exposure to excessive noise depends upon a number of factors:

• How loud is the noise as measured in decibels (dBA)?
• What is the duration of each employee’s exposure to the noise?
• Do employees move between separate work areas with different noise levels?
• Is noise generated from one source or multiple sources?

Generally, the louder the noise, the shorter the exposure time before you must provide hearing protection. For instance, employees may be exposed to a noise level of 90 dBA for 8 hours per day before you must provide hearing protection for them. Suppose, however, that the noise level reaches 115 dBA in your workplace. Then you must provide hearing protection if their anticipated exposure exceeds 15 minutes.

Table 5 shows when you must provide hearing protection to employees exposed to occupational noise at specific levels for specific periods. Noises are considered continuous if the interval between occurrences of the maximum noise level is 1 second or less. Noises not meeting this definition are considered impact or impulse noises. Exposure to impact or impulse noises (loud momentary explosions of sound) must not exceed 140 dB. Examples of impact or impulse noises may include the noise from a powder-actuated nail gun, the noise from a punch press, or the noise from drop hammers.

Table 5. Permissible Noise Exposures

<table>
<thead>
<tr>
<th>Duration per day, hours</th>
<th>Sound level dBA slow response</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>95</td>
</tr>
<tr>
<td>3</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>1 1/2</td>
<td>102</td>
</tr>
<tr>
<td>1</td>
<td>105</td>
</tr>
<tr>
<td>1/2</td>
<td>110</td>
</tr>
<tr>
<td>1/4 or less</td>
<td>115</td>
</tr>
</tbody>
</table>

Source: 29 CFR 1910.95 Table G-16.

Will earplugs reduce employee exposure to high noise levels?

As with other types of hazards, you must implement feasible engineering controls and work practices before resorting to PPE such as earplugs or earmuffs. If engineering and work practice controls do not lower employee exposure to workplace noise to acceptable levels, then you must provide employees with appropriate PPE.

What if my employees are exposed to different levels of noise throughout the day?

If employees move from location to location and the noise level is different in each location, or if the noise levels in an area change throughout the day (e.g., equipment turns on or off), you must calculate an “equivalent noise factor” to determine whether you must provide hearing protection.

• Measure the noise level at each location in which the employee works.
• For each noise level, find the allowable duration in Table 5.
• For each location, divide the actual time the employee spends there by the permissible duration for the noise at the measured level, according to Table 5.

• Add all the results from your division.
• If the total is greater than one, you must implement engineering controls or work practices or provide hearing protection to your exposed employees.

The formula for calculating this exposure is as follows:

\[F_e = \frac{C_1}{T_1} + \frac{C_2}{T_2} + \ldots + \frac{C_n}{T_n} \]

Where

- \(F_e \) = the equivalent noise factor.
- \(C \) = the period of actual noise exposure at an essentially constant level at each location in which the employee works.
- \(T \) = the permissible duration of noise exposure at an essentially constant noise level, from Table 5.

What kinds of devices protect against high noise levels? Is cotton sufficient as earplugs?

Plain cotton does not effectively protect against occupational noise. You may, however, choose from several products that are effective at protecting your employees’ hearing.

- **Single-use earplugs.** Made of waxed cotton, foam, or fiberglass wool, these ear plugs are self-forming and, when properly inserted, work as well as most molded earplugs.

- **Preformed or molded earplugs.** Sometimes single-use and disposable, these plugs must be individually fitted by a professional. Nondisposable plugs should be cleaned after each use.

- **Earmuffs.** Earmuffs require a perfect seal around the ear. Glasses, long sideburns, long hair, and facial movements such as chewing may reduce the protective value of earmuffs. You may purchase special earmuffs designed for use with eyeglasses or beards.

If I provide my employees with hearing protection, can they then work in areas with any level of noise for any period of time?

No. Hearing protectors reduce only the amount of noise that gets through to the ears. The amount of this reduction is referred to as attenuation. Attenuation differs according to the type of hearing protection used and how well they fit. The hearing protectors you choose must be capable of achieving the attenuation needed to reduce the employee’s noise exposure to within the acceptable limits noted in Table 5. Appendix B of 29 CFR 1910.95, Occupational Noise Exposure, describes methods for estimating the attenuation of a particular hearing protector based on the device’s noise reduction rating (NRR). Manufacturers of hearing protection devices must report the device’s NRR on the product packaging.

Once I have selected equipment to protect my employees’ hearing, how do I make sure they use it properly?

Train your employees to use the hearing protection. Checklist H will help you train your employees to use and care for the earplugs or earmuffs that you provide.
Checklist H:
Use and Care of Hearing Protection

Train your employees to know...

- Why hearing protection is necessary—i.e., the workplace hazards that threaten their hearing
- How the earplugs or earmuffs will protect them
- The limitations of the hearing protection
- When they must insert or wear the hearing protectors
- How to adjust earmuff parts for a comfortable and effective fit, or form the earplugs to fit their ears
- How special earmuffs fit over an employee’s corrective lenses
- How to clean and disinfect the hearing protection

Once I have provided my employees with hearing protection and training in how to use it, how do I know that it is really protecting their hearing?

If your employees are exposed to occupational noise at or above 85 dBA averaged over an 8-hour period, then you must institute a hearing conservation program that includes regular testing of employees’ hearing by qualified professionals. The OSHA occupational noise standard, at 29 CFR 1910.95, sets forth the requirements for a hearing conservation program.
You must consider many factors when selecting PPE to protect your employees from workplace hazards. With all of the types of operations that can present hazards and all of the types of PPE available to protect the different parts of a worker’s body from specific types of hazards, this selection process can be confusing and at times overwhelming. Because of this, OSHA requires that you implement a PPE program to help you systematically assess the hazards in the workplace and select the appropriate PPE that will protect your workers from those hazards. As part of this PPE program, you must do the following:

- Assess the workplace to identify equipment, operations, chemicals, and other workplace components that could harm your employees.
- Implement engineering controls and work practices to control or eliminate these hazards to the extent feasible.
- Select the appropriate types of PPE to protect your employees from hazards that cannot be eliminated or controlled through engineering controls and work practices.
- Inform your employees why the PPE is necessary and when it must be worn.
- Train your employees how to use and care for the selected PPE and how to recognize PPE deterioration and failure.
- Require your employees to wear the selected PPE in the workplace.

The basic information presented here attempts to establish and illustrate a logical, structured approach to hazard assessment and PPE selection and application for you to use as a starting point for your PPE program.
Other Sources of OSHA Assistance

Safety and Health Program Management Guidelines

Effective management of worker safety and health protection is a decisive factor in reducing the extent and severity of work-related injuries and illnesses and their related costs. To assist employers and employees in developing effective safety and health programs, OSHA published recommended Safety and Health Program Management Guidelines (Federal Register 54 (18): 3908-3916, January 26, 1989). These voluntary guidelines apply to all places of employment covered by OSHA.

The guidelines identify four elements that are critical to the development of a successful safety and health management program:

- Management commitment and employee involvement
- Worksite analysis
- Hazard prevention and control
- Safety and health training.

The guidelines recommend specific actions under each of these general elements to achieve an effective safety and health program. A single free copy of the guidelines can be obtained from the U.S. Department of Labor, OSHA/OSHA Publications, P.O. Box 37535, Washington, DC 20013-7535, by sending a self-addressed mailing label with your request. See also Federal Register notices on OSHA’s Web site at http://www.osha.gov.

State Programs

The Occupational Safety and Health Act of 1970 encourages states to develop and operate their own job safety and health plans. States with plans approved under section 18(b) of the Act must adopt standards and enforce requirements that are at least as effective as federal requirements. There are currently 25 state-plan states: 23 of these states administer plans covering both private and public (state and local government) employees; the other two states, Connecticut and New York, cover public employees only. Plan states must adopt standards comparable to Federal requirements within six months of a Federal standard’s promulgation. Until a state standard is promulgated, Federal OSHA provides interim enforcement assistance, as appropriate, in these states. A listing of approved state plans appears at the end of this publication.

Free On-Site Consultation

Free on-site safety and health consultation services are available in all states to employers who want help in establishing and maintaining a safe and healthful workplace. Primarily developed for smaller employers with more hazardous operations, the OSHA Consultation Service is largely funded by OSHA and is delivered by state governments employing professional safety consultants and health consultants. The full service assistance that is offered includes an appraisal of all mechanical systems, physical work practices, occupational safety and health hazards of the workplace, and all aspects of the employer’s present job safety and health program. In addition, the service offers assistance to employers in developing and implementing an effective workplace safety and health program that corrects and continuously addresses safety and health concerns.

This program is completely separate from OSHA’s inspection efforts. No penalties are proposed or citations issued for any safety or health problems identified by the consultant. The service is confidential. The employer’s name, the firm’s name, and any information about the workplace, plus any unsafe or unhealthful working conditions that the consultant uncovers will not be reported routinely to the OSHA inspection staff.

The only obligation is the employer’s commitment to correct serious job safety and health hazards in a timely manner. The employer is asked to make this commitment prior to the actual visit.

For more information concerning consultation services, see the list of state consultation projects at the end of this publication.

Voluntary Protection Programs (VPP)

The Voluntary Protection Programs (VPP) are designed to recognize and promote effective safety
and health program management. In the VPP, management, labor, and OSHA establish cooperative relationships at workplaces that have implemented strong programs.

Sites approved for VPP’s Star, Merit, and Demonstration programs have met, and must continue to meet, rigorous participation standards. Benefits of VPP participation include improved employee motivation to work safely, leading to better quality and productivity; lost-workday case rates that generally are 60-80 percent below industry averages; reduced workers’ compensation and other injury- and illness-related cost; positive community recognition and interaction; further improvement and revitalization of already good safety and health programs; and partnership with OSHA.

A valuable offshoot of the Voluntary Protection Programs is the Mentoring Program operated by the VPP Participants’ Association, a private, nonprofit organization that supports the VPP’s goals. Worksites that have qualified for participation in the VPP share their experience and expertise with sites that have requested help in developing and implementing effective worker safety and health programs. Information on mentoring can be obtained from the VPP Participants’ Association, 7600-E Leesburg Pike, Suite 440, Falls Church, VA 22043, telephone (703) 761-1148.

Voluntary Protection Programs and on-site consultation services, when coupled with an effective enforcement program, expand worker protection to help meet the goals of the OSH Act.

For additional information about the VPP, contact the VPP Manager in your OSHA Regional Office, listed at the end of this publication.

Training and Education

OSHA’s area offices offer a variety of information services such as publications, audiovisual aids, technical advice, and speakers for special engagements. OSHA’s Training Institute in Des Plaines, IL, provides basic and advanced courses in safety and health for federal and state compliance officers, state consultants, federal agency personnel, and private-sector employers, employees, and their representatives.

The OSHA Training Institute also has established OSHA Training Institute Education Centers to address the increased demand for its courses from the private sector and from other Federal agencies. These centers are nonprofit colleges, universities, and other organizations that have been selected after a competition for participation in the program. They are located in various parts of the United States.

OSHA also provides grants to nonprofit organizations for workplace training and education in subjects where OSHA believes there is a lack of workplace training. Grants are awarded annually, and grant recipients are expected to contribute 20 percent of the total grant cost.

For more information on grants, training, and education, contact the OSHA Training Institute, Office of Training and Education, 1555 Times Drive, Des Plaines, IL 60018, telephone (847) 297-4810.

For further information on any OSHA program, contact your nearest OSHA area or regional office. A list of these offices is at the end of this publication.

Electronic Information

Internet: OSHA standards, interpretations, directives, and additional information are now on the Worldwide Web at http://www.osha.gov/.

CD-ROM: A wide variety of OSHA materials including standards, interpretations, directives, and more can be purchased on CD-ROM from the Government Printing Office. To order, write to the Superintendent of Documents, P.O. Box 371954, Pittsburgh, PA 15250-7954. Specify OSHA Regulations, Documents and Technical Information on CD-ROM, (ORDT), S/N 729-013-000000-5. The price is $46.00 per year; single copy $17.00.

Emergencies

For life-threatening situations, call (800) 321-OSHA. Complaints will go immediately to the nearest OSHA area or state office for help.

For further information on any OSHA program, contact your nearest OSHA area or regional office.
States with Approved Plans

Commissioner
Alaska Department of Labor
1111 West 8th Street
Room 304
Juneau, AK 99801-1149
(907) 465-2700

Director
Industrial Commission of Arizona
800 W. Washington
Phoenix, AZ 85007-2922
(602) 542-5795

Director
California Department of Industrial Relations
455 Golder Gate Avenue-10th Floor
San Francisco, CA 94102
(415) 703-5050

Commissioner
Connecticut Department of Labor
200 Folly Brook Boulevard
Wethersfield, CT 06109
(203) 566-5123

Director
Hawaii Department of Labor and Industrial Relations
830 Punchbowl Street
Honolulu, HI 96813
(808) 586-8844

Commissioner
Indiana Department of Labor
State Office Building
402 West Washington Street
Room W195
Indianapolis, IN 46204-2751
(317) 232-2378

Commissioner
Iowa Division of Labor Services
1000 E. Grand Avenue
Des Moines, IA 50319-0209
(515) 281-3447

Secretary
Kentucky Labor Cabinet
1049 U.S. Highway, 127 South, Suite 4
Frankfort, KY 40601
(502) 564-3070

Commissioner
Maryland Division of Labor and Industry
Department of Labor, Licensing, and Regulation
1100 N. Eutaw Street, Room 613
Baltimore, MD 21201-2206
(410) 767-2215

Director
Michigan Department of Consumer and Industry Services
P.O. Box 30643
Lansing, MI 48909-8143
(517) 322-1814

Commissioner
Minnesota Department of Labor and Industry
443 Lafayette Road
St. Paul, MN 55155-4307
(651) 296-2342

Director
Nevada Division of Industrial Relations
400 West King Street
Carson City, NV 89710
(751) 687-3032

Secretary
New Mexico Environment Department
1190 St. Francis Drive
P.O. Box 26110
Santa Fe, NM 87502
(505) 827-2850

Commissioner
New York Department of Labor
W. Averell Harriman State Office Building - 12, Room 500
Albany, NY 12240
(518) 457-2741
Commissioner
North Carolina Department of Labor
4 West Edenton Street
Raleigh, NC 27601-1092
(919) 807-7166

Administrator
Department of Consumer & Business Services
Occupational Safety and Health Division (OR-OSHA)
350 Winter Street, NE, Room 430
Salem, OR 97310-0220
(503) 378-3272

Secretary
Puerto Rico Department of Labor and Human Resources
Prudencio Rivera Martinez Building
505 Munoz Rivera Avenue
Hato Rey, PR 00918
(809) 754-2119

Commissioner
South Carolina Department of Labor, Licensing, and Regulation
Koger Office Park, Kingstree Building
110 Centerview Drive
P.O. Box 11329
Columbia, SC 29210
(803) 896-4300

Commissioner
Tennessee Department of Labor
710 James Robertson Parkway
Nashville, TN 37243-0659
(615) 741-2582

Commissioner
Labor Commission of Utah
160 East 300 South, 3rd Floor
P.O. Box 146650
Salt Lake City, UT 84114-6650
(801) 530-6898

Commissioner
Vermont Department of Labor and Industry
National Life Building - Drawer 20
National Life Drive
Montpelier, VT 05620-3401
(802) 828-5098

Commissioner
Virginia Department of Labor and Industry
Powers-Taylor Building
13 South 13th Street
Richmond, VA 23219
(804) 786-2377

Commissioner
Virgin Islands Department of Labor
2203 Church Street
Christiansted St. Croix, VI 00820-4660
(340) 773-1994

Director
Washington Department of Labor and Industries
P.O. Box 44001
Olympia, WA 98504-4001
(360) 902-4200

Administrator
Worker’s Safety and Compensation Division (WSC)
Wyoming Department of Employment
Herschler Building, 2nd Floor East
122 West 25th Street
Cheyenne, WY 82002
(307) 777-7786
Alabama (Region IV)
Safe State Program
University of Alabama
425 Martha Parham West
P.O. Box 870388
Tuscaloosa, AL 35487
(205) 348-3033

Alaska (Region X)
Consultation Section
ADOL/OSHA
3301 Eagle Street
P.O. Box 107022
Anchorage, AK 99510
(907) 269-4957

Arizona (Region IX)
Consultation and Training
Division of Occupational Safety & Health
Industrial Commission of Arizona
800 West Washington
Phoenix, AZ 85007-9070
(602) 542-1695

Arkansas (Region VI)
OSHA Consultation
Arkansas Department of Labor
10421 West Markham
Little Rock, AK 72205
(501) 682-4522

California (Region IX)
CAL/OSHA Consultation Service
Department of Industrial Relations
455 Golden Gate Avenue, 10th Floor
San Francisco, CA 94102
(415) 972-5270

Colorado (Region VIII)
Occupational Safety & Health Section
Colorado State University
115 Environmental Health Building
Fort Collins, CO 80523
(970) 491-6151

Connecticut (Region I)
Division of Occupational Safety & Health
Connecticut Department of Labor
38 Wolcott Hill Road
Wethersfield, CT 06109
(860) 566-4550

Delaware (Region III)
Occupational Safety and Health
Division of Industrial Affairs
Delaware Department of Labor
4425 Market Street
Wilmington, DE 19802
(302) 761-8219

District of Columbia (Region III)
Office of Occupational Safety and Health
D.C. Department of Employment Services
950 Upshur Street, N.W.
Washington, DC 20011
(202) 576-6339

Florida (Region IV)
7(c)(1) Onsite Consultation Program
Division of Safety
Florida Department of Labor
& Employment Security
2002 St. Augustine Road
Building E, Suite 45
Tallahassee, FL 32399-0663
(850) 922-8955

Georgia (Region IV)
7(c)(1) Onsite Consultation Program
Georgia Institute of Technology
151 6th Street, NW
O’Keefe Building, Room 22
Atlanta, GA 30332-0837
(404) 894-2643

Guam (Region IX)
OSHA Onsite Consultation
Department of Labor, Government of Guam
107 F Street
Tiyam, GU 96931
(671) 475-0136
<table>
<thead>
<tr>
<th>Region</th>
<th>State</th>
<th>Address</th>
<th>Postcode</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawaii (Region IX)</td>
<td>Hawaii</td>
<td>830 Punchbowl Street</td>
<td>96813</td>
<td>(808) 586-9100</td>
</tr>
<tr>
<td>Idaho (Region X)</td>
<td>Idaho</td>
<td>1910 University Drive</td>
<td>83725</td>
<td>(208) 426-3283</td>
</tr>
<tr>
<td>Illinois (Region V)</td>
<td>Illinois</td>
<td>100 W east Randolph Street</td>
<td>60601</td>
<td>(312) 814-2337</td>
</tr>
<tr>
<td>Indiana (Region V)</td>
<td>Indiana</td>
<td>402 West Washington</td>
<td>46204-2287</td>
<td>(317) 232-2688</td>
</tr>
<tr>
<td>Iowa (Region VII)</td>
<td>Iowa</td>
<td>2016 DMACC Boulevard</td>
<td>50021</td>
<td>(515) 281-5352</td>
</tr>
<tr>
<td>Kansas (Region VII)</td>
<td>Kansas</td>
<td>512 South West 6th Street</td>
<td>66603-3150</td>
<td>(785) 296-7476</td>
</tr>
<tr>
<td>Kentucky (Region IV)</td>
<td>Kentucky</td>
<td>1047 U.S. Highway 127, South</td>
<td>40601</td>
<td>(502) 564-6895</td>
</tr>
<tr>
<td>Louisiana (Region VI)</td>
<td>Louisiana</td>
<td>1001 N. 23rd Street, Room 230</td>
<td>70804-9094</td>
<td>(504) 342-9601</td>
</tr>
<tr>
<td>Maine (Region I)</td>
<td>Maine</td>
<td>1047 U.S. Highway 127, South</td>
<td>40601</td>
<td>(502) 564-6895</td>
</tr>
<tr>
<td>Maryland (Region III)</td>
<td>Maryland</td>
<td>312 Marshall Avenue, Room 600</td>
<td>20707</td>
<td>(410) 880-4970</td>
</tr>
<tr>
<td>Massachusetts (Region I)</td>
<td>Massachusetts</td>
<td>1001 Watertown Street</td>
<td>02165</td>
<td>(617) 727-3982</td>
</tr>
<tr>
<td>Michigan (Health) (Region V)</td>
<td>Michigan</td>
<td>7150 Harris Drive</td>
<td>48909</td>
<td>(517) 322-1809</td>
</tr>
<tr>
<td>Michigan (Safety) (Region V)</td>
<td>Michigan</td>
<td>7150 Harris Drive</td>
<td>48909</td>
<td>(517) 322-1809</td>
</tr>
</tbody>
</table>
Minnesota (Region V)
Department of Labor and Industry
Consultation Division
433 LaFayette Road
Saint Paul, MN 55155
(612) 297-2393

Mississippi (Region IV)
Mississippi State University
Center for Safety and Health
2906 North State Street
Suite 201
Jackson, MS 39216
(601) 987-3981

Missouri (Region VII)
Onsite Consultation Program
Division of Labor Standards
Department of Labor and Industrial Relations
3315 West Truman Boulevard
P.O. Box 449
Jefferson City, MO 65109
(573) 751-3403

Montana (Region VIII)
Department of Labor and Industry
Bureau of Safety
P.O. Box 1728
Helena, MT 59624-1728
(406) 444-6418

Nebraska (Region VII)
Division of Safety and Labor Standards
Nebraska Department of Labor
State Office Building, Lower level
301 Centennial Mall, South
Lincoln, NE 68509-5024
(402) 471-4717

Nevada (Region IX)
Safety Consultation and Training Section
Division of Industrial Relations
Department of Business and Industry
1301 Green Valley Parkway
Henderson, NV 89014
(702) 486-9140

New Hampshire (Region I)
New Hampshire Department of Health and Human Services
6 Hazen Drive
Concord, NH 03301-6527
(603) 271-2024

New Jersey (Region II)
New Jersey Department of Labor
Division of Public Safety and Occupational Safety and Health
255 E. State Street, 8th Floor West
P.O. Box 953
Trenton, NJ 08625-0953
(609) 292-3923

New Mexico (Region VI)
New Mexico Environment Department
Occupational Health and Safety Bureau
525 Camino de los Marquez, Suite 3
P.O. Box 26110
Santa Fe, NM 87502
(505) 827-4230

New York (Region II)
Division of Safety and Health
State Office Campus
Building 12, Room 130
Albany, NY 12240
(518) 457-2238

North Carolina (Region IV)
Bureau of Consultative Services
North Carolina Department of Labor
4 West Edenton Street
Raleigh, NC 27603-1092
(919) 807-2905

North Dakota (Region VIII)
Division of Environmental Engineering
Room 304
1200 Missouri Avenue
Bismarck, ND 58504
(701) 328-5188
Ohio (Region V)
Division of Onsite Consultation
Bureau of Employment Services
145 S. Front Street
Columbus, OH 43215
(614) 644-2246

Oklahoma (Region VI)
Oklahoma Department of Labor
OSHA Division
4001 North Lincoln Boulevard
Oklahoma City, OK 73105-5212
(405) 528-1500

Oregon (Region X)
Oregon OSHA
Department of Consumer and Business Services
350 Winter Street, N.E., Room 430
Salem, OR 97310
(503) 378-3272

Pennsylvania (Region III)
Indiana University of Pennsylvania
Room 210 Walsh Hall
302 East Walk
Indiana, PA 15705-1087
(412) 357-2396

Puerto Rico (Region II)
Occupational Safety and Health Office
Department of Labor and Human Resources
21st Floor
505 Munoz Rivera Avenue
Hato Rey, PR 00918
(787) 754-2171

Rhode Island (Region I)
OSH Consultation Program
Division of Occupational Health and Radiation Control
Rhode Island Department of Health
3 Capital Hill
Providence, RI 02908
(401) 277-2438

South Carolina (Region IV)
South Carolina Department of Labor, Licensing and Regulation
3600 Forest Drive
P.O. Box 11329
Columbia, SC 29204
(803) 734-9614

South Dakota (Region VIII)
Engineering Extension
OnsiteTechnical Program
South Dakota State University
West Hall, Box 510
907 Harvey Dunn Street
Brookings, SD 57007
(605) 688-4101

Tennessee (Region IV)
OSHA Consultative Services Division
Tennessee Department of Labor
3rd Floor
710 James Robertson Parkway
Nashville, TN 37243-0659
(615) 741-7036

Texas (Region VI)
Workers’ Health and Safety Division
Workers’ Compensation Commission
Southfield Building
4000 South IH 35
Austin, TX 78704
(512) 440-4640

Utah (Region VIII)
Utah Labor Commission
Workplace Safety and Health Consultation Services
160 East 300 South
Salt Lake City, UT 84114-6650
(801) 530-6901

Vermont (Region I)
Division of Occupational Safety and Health
Vermont Department of Labor and Industry
National Life Building, Drawer #20
Montpelier, VT 05602-3401
(802) 828-2765
Virginia (Region III)
Virginia Department of Labor and Industry
Occupational Safety and Health Training and Consultation
13 South 13th Street
Richmond, VA 23219
(804) 786-6359

Virgin Islands (Region II)
Division of Occupational Safety and Health
Virgin Islands Department of Labor
3021 Golden Rock
Christiansted
St. Croix, VI 00840
(340) 772-1315

Washington (Region X)
Washington Department of Labor and Industries
Division of Industrial Safety & Health
P.O. Box 44643
Olympia, WA 98504
(360) 902-5638

West Virginia (Region III)
West Virginia Department of Labor
Capitol Complex Building #3, Room 319
1800 East Washington Street
Charleston, WV 25305
(304) 558-7890

Wisconsin (Health) (Region V)
Wisconsin Department of Health and Human Services
Division of Public Health
Section of Occupational Health
Room 112
1414 East Washington Avenue
Madison, WI 53703
(608) 266-8579

Wisconsin (Safety) (Region V)
Wisconsin Department of Commerce
Bureau of Marketing, Advocacy, and Technology Development
Bureau of Manufacturing and Assessment
NI4 W23833 Stone Ridge Drive
Suite B100
Waukesha, WI 53188-1125
(414) 523-3040

Wyoming (Region VIII)
Wyoming Department of Employment
Workers’ Safety and Compensation Division
Herschler Building, 2 East
122 West 25th Street
Cheyenne, WY 82002
(307) 777-7786
Consultation Training Coordinator
OSHA Training Institute
1555 Times Drive
Des Plaines, IL 60018
(847) 297-4810

Laboratory Services Agreement
Wisconsin Occupational Health Lab
979 Jonathan Drive
Madison, WI 53713
(608) 263-8807

New York Public Sector Consultation Project
New York State Department of Labor
Building #12
State Building Campus
Albany, NY 12240
(518) 457-3518

Director of Consultation Support Services
University of Alabama
College of Continuing Studies
425 Martha Parham West
P.O. Box 870388
Tuscaloosa, AL 35487-0388
(205) 348-4585
OSHA Area Offices

US Department of Labor - OSHA
2047 Canyon Road - Todd Mall
Birmingham, AL 35216-1981
Telephone: (205) 731-1534

US Department of Labor - OSHA
3737 Government Blvd., Suite 100
Mobile, AL 36693-4309
Telephone: (334) 441-6131

US Department of Labor - OSHA
301 W. Northern Lights Blvd.
Suite 407
Anchorage, AK 99503-7571
Telephone: (907) 271-5152

US Department of Labor - OSHA
3221 North 16th Street, Suite 100
Phoenix, AZ 85016
Telephone: (602) 640-2007

US Department of Labor - OSHA
425 West Capitol
Suite 450
Little Rock, AR 72201
Telephone: (501) 324-6291

US Department of Labor - OSHA
5675 Ruffin Road, Suite 330
San Diego, CA 92123
Telephone: (619) 557-2909

US Department of Labor - OSHA
101 El Camino Plaza, Suite 105
San Francisco, CA 95815
Telephone: (916) 566-7470

US Department of Labor - OSHA
1391 North Speer Boulevard
Suite 210
Denver, CO 80204-2552
Telephone: (303) 844-5285

US Department of Labor - OSHA
7935 E. Prentice Avenue, Suite 209
Englewood, CO 80111-2714
Telephone: (303) 843-4500

US Department of Labor - OSHA
Clark Building
1057 Broad Street
Bridgeport, CT 06604
Telephone: (203) 579-5581

US Department of Labor - OSHA
Federal Office Building
450 Main Street, Room 613
Hartford, CT 06103
Telephone: (203) 240-3152

US Department of Labor - OSHA
1 Rodney Square
920 King Street, Suite 402
Wilmington, DE 19801-3319
(302) 573-6115

US Department of Labor - OSHA
8040 Peters Road
Building H-100
Fort Lauderdale, FL 33324
Telephone: (954) 424-0242

US Department of Labor - OSHA
Ribault Building
1851 Executive Center Drive
Suite 227
Jacksonville, FL 32207
Telephone: (904) 232-2895

US Department of Labor - OSHA
5807 Breckenridge Parkway
Suite A
Tampa, FL 33610-4249
Telephone: (813) 626-1177

US Department of Labor - OSHA
450 Mall Boulevard, Suite J
Savannah, GA 31406
Telephone: (912) 652-4393

US Department of Labor - OSHA
2400 Herodian Way, Suite 250
Smyrna, GA 30080-2968
Telephone: (770) 984-8700
US Department of Labor - OSHA
Building 7, Suite 110
2183 N. Lake Parkway
La Vista Perimeter Office Park
Tucker, GA 30084-4154
Telephone: (770) 493-6644

US Department of Labor - OSHA
300 Ala Moana Boulevard, Suite 5146
Honolulu, HI 96850
Telephone: (808) 541-2685

US Department of Labor - OSHA
1150 N. Curtis Road
Suite 201
Boise, ID 83706
Telephone: (208) 321-2960

US Department of Labor - OSHA
1600 167th Street, Suite 12
Calumet City, IL 60409
Telephone: (708) 891-3800

US Department of Labor - OSHA
2360 E. Devon Avenue
Suite 1010
Des Plaines, IL 60018
Telephone: (847) 803-4800

US Department of Labor - OSHA
11 Executive Drive, Suite 11
Fairview Heights, IL 62208
Telephone: (618) 632-8612

US Department of Labor - OSHA
344 Smoke Tree Business Park
North Aurora, IL 60542
Telephone: (630) 896-8700

US Department of Labor - OSHA
2918 West Willow Knolls Road
Peoria, IL 61614
Telephone: (309) 671-7033

US Department of Labor - OSHA
46 East Ohio Street, Room 423
Indianapolis, IN 46204
Telephone: (317) 226-7290

US Department of Labor - OSHA
210 Walnut Street, Room 815
Des Moines, IA 50309
Telephone: (515) 284-4794

US Department of Labor - OSHA
300 Epic Center
301 N. Main
Wichita, KS 67202
Telephone: (316) 269-6644

US Department of Labor - OSHA
John C. Watts Federal Building, Room 108
330 W. Broadway
Frankfort, KY 40601-1922
Telephone: (502) 227-7024

US Department of Labor - OSHA
9100 Bluebonnet Centre Boulevard
Suite 201
Baton Rouge, LA 70809
Telephone: (225) 389-0474

US Department of Labor - OSHA
40 Western Avenue, Room 608
Augusta, ME 04330
Telephone: (207) 622-8417

US Department of Labor - OSHA
U.S. Federal Building
202 Harlow Street
Room 211
Bangor, ME 04401
Telephone: (207) 941-8177

US Department of Labor - OSHA
1099 Winterson Road, Suite 140
Linthicum, MD 21090-2218
Telephone: (410) 865-2055

US Department of Labor - OSHA
639 Granite Street, 4th Floor
Braintree, MA 02184
Telephone: (617) 565-6924
<table>
<thead>
<tr>
<th>US Department of Labor - OSHA</th>
<th>US Department of Labor - OSHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valley Office Park</td>
<td>705 North Plaza, Room 204</td>
</tr>
<tr>
<td>13 Branch Street</td>
<td>Carson City, NV 89701</td>
</tr>
<tr>
<td>Methuen, MA 01844</td>
<td>Telephone: (702) 885-6963</td>
</tr>
<tr>
<td>Telephone: (617) 565-8110</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>US Department of Labor - OSHA</td>
<td>US Department of Labor - OSHA</td>
</tr>
<tr>
<td>1145 Main Street, Room 550</td>
<td>279 Pleasant Street, Suite 201</td>
</tr>
<tr>
<td>Springfield, MA 01103-1493</td>
<td>Concord, NH 03301</td>
</tr>
<tr>
<td>Telephone: (413) 785-0123</td>
<td>Telephone: (603) 225-1629</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>US Department of Labor - OSHA</td>
<td>US Department of Labor - OSHA</td>
</tr>
<tr>
<td>801 South Waverly Road</td>
<td>1030 Saint Georges Avenue</td>
</tr>
<tr>
<td>Suite 306</td>
<td>Plaza 35, Suite 205</td>
</tr>
<tr>
<td>Lansing, MI 48917-4200</td>
<td>Avenel, NJ 07001</td>
</tr>
<tr>
<td>Telephone: (517) 377-1892</td>
<td>Telephone: (732) 750-3270</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>US Department of Labor - OSHA</td>
<td>US Department of Labor - OSHA</td>
</tr>
<tr>
<td>300 South 4th Street, Room 1205</td>
<td>500 Route 17 South, 2nd Floor</td>
</tr>
<tr>
<td>Minneapolis, MN 55415</td>
<td>Hasbrouck Heights, NJ 07604</td>
</tr>
<tr>
<td>Telephone: (612) 664-5460</td>
<td>Telephone: (201) 288-1700</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>US Department of Labor - OSHA</td>
<td>US Department of Labor - OSHA</td>
</tr>
<tr>
<td>3780 I-55 North</td>
<td>Marlton Executive Park</td>
</tr>
<tr>
<td>Suite 210</td>
<td>701 Route 73 South Building 2</td>
</tr>
<tr>
<td>Jackson, MS 39211-6323</td>
<td>Suite 120</td>
</tr>
<tr>
<td>Telephone: (601) 965-4606</td>
<td>Marlton, NJ 08053</td>
</tr>
<tr>
<td></td>
<td>Telephone: (609) 757-5181</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>US Department of Labor - OSHA</td>
<td>US Department of Labor - OSHA</td>
</tr>
<tr>
<td>6200 Connecticut Avenue, Suite 100</td>
<td>299 Cherry Hill Road, Suite 304</td>
</tr>
<tr>
<td>Kansas City, MO 64120</td>
<td>Parsippany, NJ 07054</td>
</tr>
<tr>
<td>Telephone: (816) 483-9531</td>
<td>Telephone: (973) 263-1003</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>US Department of Labor - OSHA</td>
<td>US Department of Labor - OSHA</td>
</tr>
<tr>
<td>911 Washington Avenue</td>
<td>505 Marquette Avenue, NW</td>
</tr>
<tr>
<td>Room 420</td>
<td>Suite 820</td>
</tr>
<tr>
<td>St. Louis, MO 63101</td>
<td>Alburquerque, NM 87102</td>
</tr>
<tr>
<td>Telephone: (314) 425-4249</td>
<td>Telephone: (505) 248-5302</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>US Department of Labor - OSHA</td>
<td>US Department of Labor - OSHA</td>
</tr>
<tr>
<td>2900 4th Avenue North, Suite 303</td>
<td>401 New Kamer Road</td>
</tr>
<tr>
<td>Billings, MT 59101</td>
<td>Suite 300</td>
</tr>
<tr>
<td>Telephone: (406) 247-7494</td>
<td>Albany, NY 12205-3809</td>
</tr>
<tr>
<td></td>
<td>Telephone: (518) 464-4338</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>US Department of Labor - OSHA</td>
<td>US Department of Labor - OSHA</td>
</tr>
<tr>
<td>Overland Wolf Building, Room 100</td>
<td>42-40 Bell Boulevard</td>
</tr>
<tr>
<td>6910 Pacific Street</td>
<td>Bayside, NY 11361</td>
</tr>
<tr>
<td>Omaha, NE 68106</td>
<td>Telephone: (718) 279-9060</td>
</tr>
<tr>
<td>US Department of Labor - OSHA</td>
<td>US Department of Labor - OSHA</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>5360 Genesee Street</td>
<td>Federal Office Building, Room 899</td>
</tr>
<tr>
<td>Bowmansville, NY 14026</td>
<td>1240 East Ninth Street</td>
</tr>
<tr>
<td>Telephone: (716) 684-3891</td>
<td>Cleveland, OH 44199</td>
</tr>
<tr>
<td></td>
<td>Telephone: (216) 522-3818</td>
</tr>
<tr>
<td>US Department of Labor - OSHA</td>
<td>US Department of Labor - OSHA</td>
</tr>
<tr>
<td>6 World Trade Center, Room 881</td>
<td>Federal Office Building, Room 620</td>
</tr>
<tr>
<td>New York, NY 10048</td>
<td>200 N. High Street</td>
</tr>
<tr>
<td>Telephone: (212) 466-2482</td>
<td>Columbus, OH 43215</td>
</tr>
<tr>
<td>US Department of Labor - OSHA</td>
<td>US Department of Labor - OSHA</td>
</tr>
<tr>
<td>3300 Vikery Road</td>
<td>Federal Office Building, Room 734</td>
</tr>
<tr>
<td>North Syracuse, NY 13212</td>
<td>234 North Summit Street</td>
</tr>
<tr>
<td>Telephone: (315) 451-0808</td>
<td>Toledo, OH 43604</td>
</tr>
<tr>
<td>US Department of Labor - OSHA</td>
<td>US Department of Labor - OSHA</td>
</tr>
<tr>
<td>660 White Plains Road</td>
<td>420 West Main Place, Suite 300</td>
</tr>
<tr>
<td>4th Floor</td>
<td>Oklahoma City, OK 73102</td>
</tr>
<tr>
<td>Tarrytown, NY 10591-5107</td>
<td>Telephone: (405) 231-5351</td>
</tr>
<tr>
<td>Telephone: (914) 524-7510</td>
<td>US Department of Labor - OSHA</td>
</tr>
<tr>
<td></td>
<td>1220 S.W. Third Avenue, Room 640</td>
</tr>
<tr>
<td></td>
<td>Portland, OR 97204</td>
</tr>
<tr>
<td></td>
<td>Telephone: (503) 326-2251</td>
</tr>
<tr>
<td>US Department of Labor - OSHA</td>
<td>US Department of Labor - OSHA</td>
</tr>
<tr>
<td>1400 Old Court Road, Room 208</td>
<td>850 N. 5th Street</td>
</tr>
<tr>
<td>Westbury, NY 11590</td>
<td>Allentown, PA 18102</td>
</tr>
<tr>
<td>Telephone: (516) 334-3344</td>
<td>Telephone: (610) 776-0592</td>
</tr>
<tr>
<td>US Department of Labor - OSHA</td>
<td>US Department of Labor - OSHA</td>
</tr>
<tr>
<td>Century Station, Room 438</td>
<td>3939 West Ridge Road</td>
</tr>
<tr>
<td>300 Fayetteville Street Mall</td>
<td>Suite B-12</td>
</tr>
<tr>
<td>Raleigh, NC 27601-9998</td>
<td>Erie, PA 16506-1887</td>
</tr>
<tr>
<td>Telephone: (919) 856-4770</td>
<td>Telephone: (814) 833-5758</td>
</tr>
<tr>
<td>US Department of Labor - OSHA</td>
<td>US Department of Labor - OSHA</td>
</tr>
<tr>
<td>1640 East Capitol Avenue</td>
<td>Progress Plaza</td>
</tr>
<tr>
<td>Bismarck, ND 58501</td>
<td>49 N. Progress Avenue</td>
</tr>
<tr>
<td>Telephone: (701) 250-4521</td>
<td>Harrisburg, PA 17109</td>
</tr>
<tr>
<td>US Department of Labor - OSHA</td>
<td>Telephone: (717) 782-3902</td>
</tr>
<tr>
<td>36 Triangle Park Drive</td>
<td></td>
</tr>
<tr>
<td>Cincinnati, OH 45246</td>
<td></td>
</tr>
<tr>
<td>Telephone: (513) 841-4132</td>
<td></td>
</tr>
</tbody>
</table>
OSHA Area Offices

US Department of Labor - OSHA
U.S. Custom House, Room 242
Second and Chestnut Street
Philadelphia, PA 19106-2902
Telephone: (215) 597-4955

US Department of Labor - OSHA
Federal Building, Room 1428
1000 Liberty Avenue
Pittsburgh, PA 15222-4101
Telephone: (412) 395-4903

US Department of Labor - OSHA
Penn Place, Room 2005
20 North Pennsylvania Avenue
Wilkes-Barre, PA 18701-3590
Telephone: (717) 826-6538

US Department of Labor - OSHA
BBV Plaza Building
1510 F.D. Roosevelt Avenue
Guaynabo, PR 00968
Telephone: (787) 277-1560

US Department of Labor - OSHA
380 Westminster Mall, Room 243
Providence, RI 02903
Telephone: (401) 528-4669

US Department of Labor - OSHA
1835 Assembly Street, Room 1468
Columbia, SC 29201-2453
Telephone: (803) 765-5904

US Department of Labor - OSHA
2002 Richard Jones Road
Suite C-205
Nashville, TN 37215-2809
Telephone: (615) 781-5423

US Department of Labor - OSHA
903 San Jacinto Boulevard
Suite 319
Austin, TX 78701
Telephone: (512) 916-5783

US Department of Labor - OSHA
Wilson Plaza
606 N. Carancahua, Suite 700
Corpus Christi, TX 78476
Telephone: (512) 888-3420

US Department of Labor - OSHA
8344 East R.L. Thornton Freeway
Suite 420
Dallas, TX 75228
Telephone: (214) 320-2400

US Department of Labor - OSHA
North Star 2 Building
Suite 302
8713 Airport Freeway
Fort Worth, TX 76180-7610
Telephone: (817) 428-2470

US Department of Labor - OSHA
17625 El Camino Real, Suite 400
Houston, TX 77058
Telephone: (281) 286-0583

US Department of Labor - OSHA
350 North Sam Houston Parkway East
Suite 120
Houston, TX 77060
Telephone: (281) 591-2438

US Department of Labor - OSHA
Federal Building, Room 806
1205 Texas Avenue
Lubbock, TX 79401
Telephone: (806) 472-7681

US Department of Labor - OSHA
1781 South 300 West
Salt Lake City, UT 84115-1802
Telephone: (801) 487-0680

US Department of Labor - OSHA
AFOB, Room 835
200 Granby Mall
Norfolk, VA 23510
Telephone: (757) 441-3820
US Department of Labor - OSHA
505 106th Ave, N.E., Suite 302
Bellevue, WA 98004
Telephone: (360) 553-7520

US Department of Labor - OSHA
405 Capitol Street, Suite 407
Charleston, WV 25301
Telephone: (304) 347-5937

US Department of Labor - OSHA
2618 North Ballard Road
Appleton, WI 54911-8664
Telephone: (920) 734-4521

US Department of Labor - OSHA
Federal Building U.S. Courthouse
500 Barstow Street, Room B-9
Eau Claire, WI 54701
Telephone: (715) 832-9019

US Department of Labor - OSHA
4802 East Broadway
Madison, WI 53716
Telephone: (608) 264-5388

US Department of Labor - OSHA
Henry S. Reuss Building
Suite 1180
310 West Wisconsin Avenue
Milwaukee, WI 53202
Telephone: (414) 297-3315
If you are unable to contact your local OSHA Area Office, you may contact the appropriate OSHA Regional Office for information and/or assistance.

Region I
(CT,* MA, ME, NH, RI, VT*)
JFK Federal Building
RME-340
Boston, MA 02203
Telephone: (617) 565-9860

Region II
(NJ, NY,* PR, VI*)
201 Varick Street
Room 670
New York, NY 10014
Telephone: (212) 337-2378

Region III
(DC, DE, MD,* PA, VA, WV)
The Curtis Center - Suite 740 West
170 S. Independence Mall West
Philadelphia, PA 19106-3309
Telephone: (215) 861-4900

Region IV
(AL, FL, GA, KY,* MS, NC, SC,* TN*)
Atlanta Federal Center
61 Forsyth Street, SW
Room 6T50
Atlanta, GA 30303
 Telephone: (404) 562-2300

Region V
(IL, IN,* MI,* MN,* OH, WI)
230 South Dearborn Street
Room 3244
Chicago, IL 60604
Telephone: (312) 353-2220

Region VI
(AR, LA, NM,* OK, TX)
525 Griffin Street
Room 602
Dallas, TX 75202
Telephone: (214) 767-4731

Region VII
(IA,* KS, MO, NE)
City Center Square
1100 Main Street, Suite 800
Kansas City, MO 64105
Telephone: (816) 426-5861

Region VIII
(CO, MT, ND, SD, UT,* WY*)
1999 Broadway, Suite 1690
Denver, CO 80202-5716
Telephone: (303) 844-1600

Region IX
(American Samoa, AZ,* CA,* Guam,
HI,* NV,* Trust Territories of the Pacific)
71 Stevenson Street
4th Floor
San Francisco, CA 94105
Telephone: (415) 975-4310

Region X
(AK,* ID, OR,* WA*)
1111 Third Avenue
Suite 715
Seattle, WA 98101-3212
Telephone: (206) 553-5930

These states and territories operate their own OSHA-approved job safety and health programs (Connecticut and New York plans cover public employees only). States with approved programs must have a standard that is identical to, or at least as effective as, the federal standard.