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TRANSDUCER COMMITTEE OBJECTIVES

This committee apprises the Telemetry Group (TG) of significant
progress in the field of transducers wused 1in telemetry systems;
maintains any necessary liaison between the TG and the National Bureau
of Standards and their transducers' program or other related telemetry
transducer efforts; coordinates TG activities with other professional
technical groups; collects and passes on information on techniques of

measuremcnt, evaluation, reliability, calibration, reporting and
manufacturing; recommends uniform oractices for calibration, testing
and evaluation of wvehicular instrunentation componecnts; and

contributes to standards in the area of vehicular instrumentation.

vii
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DEF INITION OF THE
TRANSIUGR WORXSHIP

History:

Tne Workshop 1S sponsnred by the Vehicular
Instrumentation/Transaucer Camittee, Teiemetry Group of the
Range Commanders Council. inis camitres devalops and
implements standards anc procedures for transducer
applications, The fourteen previous wOrksnoos, Heginning in
1960, were held at two-year ntervals 4t or near varmous
'J.S. Goverrment 'nstal’ arinns around the courry,

Attendees:

Attendees are wWOrkIng=lave XOU » o0 TUST 50:ve mmg -
l1fe narmware problams and who are sTrunui, Jrieates To e
practical auproach. Therr 1eld 15 macing measuremeis Of
pysical pardneters using transaucers.  Test and project
people who attend will penefit from exposure *9 the true
complexity of transducer evaluation, selection, and
appiication,

Suhjects:

Practical prodblems involyving transguiers, s$14nal
cand tioners, and read-out devices  wiil De considered a5
Separale canpanents and In systems.  Engineering tosts,
laboratar: calibrations, transducer deveropments anc
evaluations noresent potential applications of the ideas
pre.entec, Measuranas 1nclude force. pro<suce, tlouw,
acce'eratian, velocity, displacement, temuerature and
others,

Esphasis:

e worksng;

# 15 a pratical gurmeth to e sthmion cf measyrement
[ as I TN

e at-ong'; 1uses on Lraasduters an. related
ipslrpental s 0 oused 10 medsuranents enings iy,

® Nhas g high rafic of discuss or g presentirton ot
papers, diad

® share. knowledje ang experienc thrmucn wen disdassion
Aed pracian colving,

FdCn ses5ion  J@iomdn 240 rakTs uestions trat the
JudIence 2T BX R M esEnT o,

Gnals:

The woerkshes brings mogether those people who us:
fransiducers To tgentafy prodiens and LS suyyest som?
sl etrns ) daonirties aeas Of Lomun nterest, Wt provide s
A CamUNICETion channe! wlonin e cameMily - transduler
users.  Samne examles are




improve the ccordination of information regarding
transcucer standards, test tachniques, evaluations, and
application practices among tne national test ranges,
rage USers, range contractors, other transducer users,
and transducer manufacturers;

encourage the establishmeat of special sessions so that
att'ndees with measurement problems n specific areds
can fonn supyroups and ramain to discuss these problams
after the workshop concludes; and

sol1C1T suggestions and CammesnTts on past, present, and
tuture Vehicular Instrumertation/Transducer Commtiee
Artorrs.

General Chairman:

Jom T. Ach

Wrignt Research wnd [evelopnent Jefiter, WROC/T 15GA
Wregnt-Patterson AFB (H 45433-6523

{5131 295-52X0

(ALITOVON)  785-5200

MONDAY, JUNE 19, 198Y

200 Social Hour, at the Cotoa Beach Hilton, courtesy
of the Vehicuiar Tastrmentation/Transducer
Cormit go
Al 2t londews weloime!

TUESKY, (JUNE 20, 1989

U730 ceprstration

B0 JUHN —a\"-"i, GeAr e 3l Copan
1htn Trarsduce: aerk oy
welce:  Fastert Space e Missile Test Center
dopresenta.ll e
Intrwuctiony: (LA =407
Charrman Yoenrules lnst: uent aton/ Transducer
Cnmittee ROL, ™

(BAS ession 1: Calibration Techniques
fnatiman: RICHARD TALMAUGE
Wright. Resear n 300 Develogment Center
Sornetrman: AL HAWNEY

J.5. Ay Yuma Pruving Grouna

¢ “Two Wire Automatic Romote Smsing ad Evaluation
System’
£A. [V ann LERCY BAT S
Haval Shvp Weapon Systams Engineeriryg Station

o “Fvaludation of a Digital Dexd weight Tester”™,
J.R. MIILIR
LS. Ammy TMXE Suppe L Lroup

X1

1015

1200
1730

1515

“Development of Prototype Systea for the Ispulse
Calibration of Micronhones”

DAVID L. MAUUIMIFL

Dayton Screntific, Inc, and

RICHARD C. TAMAY,

Wi ight Resear—n vt Develogment Certer

Break

“Conasremt Accelerameter Calibration Utilizing
Rigid Body Assumptions”

MICHAEL J. LALLY

Umiversity of Tor oinngt

“Comparison of Wide Band Back-to-Back and
Inerforometric. ibration Tramsducer Calibration”
TORBEN R. UITHT ina E=NST SGHONTHAL

Bruel & K¥gaer Instruments, inc.

“Large High Explosive Driven Flyer Plate iechmique
for the Calibration of Soil Stress and Motion
[nstnmentation”

JUSEPH 0. RENTCX and GORDUN H. GDODFELLUW

Air Force wWeapors ' aboratory

*Performance Evaluation of Piezcelectric
Accelerareters !Ysing a FFT Based Vibration
Transducer Calibration Systen™, minipaper

ERNST SCHONTHAL and TURBEN R. LICHT

Bruel & Kjae~ instrumnts, Inc.

LUNCH

Sessian 2: Applications

Charrman: MARTHA P, WILLIS

Rocikwel1/Rrketdy Division

Cochaviman: PETRR X, STEIN

Stein Engineerine Secvices, 1.

“An Increased Accuracy, Lual Chamwel Telemetry
Accelerometer”

RUBERT HAM ' ZE' L ana ROBEKT GATCHEL

Coiumd13 Research Lalvralrries | Inc,

“A Micromave Tronst cor for Medasiring Piston and
ard brgjectile Velocities in a Two-Stage Lightt (as
u“I

LUCTEN NAPPERT

Defence Resear b [srablisimert Valcarticr Nationgl
Defence, Canade

"Built-in Mechanical Filter in a Shack
Accelerameter”

ANTHOMY S, CHU

Endeveo forp.

“A Pressure Transcucer to Measure Blast-Induced
Poresgt er Oressure in Mater Saturated Soil”,
mintpaper

DR, WAYNE A, ORARLIE

Cotorar State Umversily

Break




¢ "Diffiailties/Remedies in Pressure Measurements
With Piezoresistive Sensors”
STEVEN NIMXLESS and A, MAQLIC
Honeywe!l Coiia Stawe Electronics

e “The PVF? Piezelectric Polymer Shock Stress
Sersor — Same Techrriques for Application Under
Field Test Conditiars”
R.”. REED end J.1. GREENAULL
SaaTx National Laboratories

¢ "Piezpelectric Polymer Shock Gua = Applicatius®
LM, LS
«TeH Lourporation

o “Selected Twe Histormes and Power Spectial

Densities of Environmental Data Taken on the Snart

Radar at the Ammy Proving Grounds Yuma, Alzona
During March 1988%, minpaper

WESLL {1 PAULSUN

Naval Snip Weapon Systans Engineering Station

WEDNESDAY, JUNE 21, 1989

0830 Session 3:  Tutomals
Chaiman  RBERT M, WHITTIER
Endeveo
Cochuinrar:  LAWKCED M. SIRES
Nav 1l Weapons (enter
e "Grouding an. Shielding for Instrumentation
Systems”
GROON UEAN
Fal1tie Instraner <

e “Dynamc Measuraments Are Seldam Routine®

JIM LALLY
PCE Terstrumics, I,
1030 Break
o “The Successful Engineering of Measurement
Systums”

M, PATHIK WALTER

Sandia Netional Laboratories
1200 lunch
1300 Tour of <pae Center
1830 No-Host Social Hour at Hotel
1930 Banguet at Hotel

THRIAY, AN 22, 1989

0830 Session 4: Data Acguisition
Chairman:  WILL[AM M. SHAY
Lawrence ¢ tvermore National | aboratory
Cocnatian:  MELTUN A, HATCH
EG & G/

1015

1700
1330

"A Cowpner Programdble Transducer Micru Cirauit
RICHARD D. TALMADGE

wWrignt Researth and Develoyment Cemto~ and
KENNETH APPLEY

Viora-Metrics, (nc.

“A Remote Sensor/Cable Identifier”

WILLIAM H, ANDREVYS JR. and STEVEN P, BAKER

N2, Widge ' - ional Laboratory

“Yoice Activated Hot Mic.”

SIDNEY R, JUNES Jr.

saval Air Te<t Comer

"Improving the Response Tioe and Accuracy of
Transtent Thermal Measuraments in Live Fire lesting
(LFT)*®, mnipaper

JAMES G, FALLFX

U.S. Amy Aberdeen Proving Ground

Break

"A Very Wide Dynamic Range Data Acquisition
Systes™

JACK R, CARREL

EGAG, Inc.

"ock Response of Secord Order Oynamical
Systews"

OR. G.A. ARTICOLO

Schaevitz Enuineering and Rutgers Jnmiversity

“In Scarch of More Qutput — Two Strain Rage
Bridge Circuits Revisited”

ROGER NIYE  ana JCHN KALNDWSK!

EAG, nc.

"The Nyquist Sampling Criterion: vou Don't Always
Have To Obey it, Bu* When You Do, [t's Worse Than
You Think!™, minipapor

PETER STEIN

Stein Engincering Services, Inc.

Lunch

Wrap Up Sssion

FNERAL  INFORMATION

This Fifteenth T-ansducer Workshop will be held ) - 22

Car 198Y gt the Ucud Beach miyton n Cocoa Beach, Florida.
“heohostinu agercy 15 the Eastern Space and Missile Center,
tatrick AFB FL.

Reqnstration

The registrazion onsists of & copieted registration
fomn, g written "Murphyram® and 3 tee of 3000 ‘pavarle in
avance or at the aoor',




G

A “Murphyist’ can de<c,fibe any measurement attempt that
went astray with the abjective of learning fram our errors
and keeping our feet on the ground. [t should be somethiny
generic rather than cammon human oversight; . samething from
which we car leam. The tone should be anonymous to not
agrbarrass &y person, organization, or campany. While a
“Murphyisn” is not a mandatory requirement, submissions are
strongly encourayed, and the best will be included in the
program.

Advance registration 1< desirable. Please use the
enclosea registration form, 1nclude a check or money order
for $80.0U payaple to the Firteenth Transducer Workshop, and
mail to the wWorksnop Registration Chaimman by 26 May 1989.
(Note: Purcnase oruers are not acceptaple.)

Hotel Accowmodatians

The official hotel for the Workshop is the Cocoa Beach
Hilton, 155 North Atlantic Avenue, Cocoa Beach, Florida
2931. A fixed block of roams nas been reserved at the
spectal rates indicated on the enclosed hotel registration
cara. Early hotel reservations are strongly encouraged.
Hotel registrations must be received by 26 May 1989.

No formal program will be provided for spouses or
yuests; however, they will be most welcame at the Social
Hour on Moniay and the banquet on Wednesday ($20.00
aoitional per guest for the dinner). Note: Final count
for the banquet must be known by 11:00 aum., 20 June 1989.

Tour-ednesday Afternoon

A tour of the Space Center 1s planned for Wednesday, 21
Jure 1989, Please indicate on the registration form if you
will be accompanied by guests so that adequate
transportation may be provided.

Format and Background

Workshops are just what the name implies! Everyone
should come prepared to contribute something from his
knowledge and experience. In a workshop, the attendees
become the program in the sense that the extent and
enthusiagn of their participation determines the success of
the workshop.

Participants will have the opportunity to hear what
treir colleagues nhdve been doing and how it went; to
explore areas of common 1nterest and cammon problems;  to
ofter ideas and sugyestions about what 1s needed in
transducers, techmigues, and applications. Several
instrumentdtion experts have been invited to give
gresentations
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TWARSES -TWO WIRE AUTOMATIC REMOTE SENSING AND EVALUATION SYSTEM

Ernest A. Dahl And Leroy Bates
Naval Ship Weapon Systems
Engineering Station (NSWSES)

Port Hueneme, CA

ABSTRACT

This paper discusses an Automatic Monitoring
System (AMS) which provides sensing and
monitoring capability to indicate the conditions
at any number of sensors at remote location
using a common 2 wires which uniquely provides
sensor power, sensor identification and sensor
performance evaluation, The system consists of
a Scanner Display Panel Module (SDPM) panel and
up to 144 individual transponders connected by a
two-conductor signal bus. Depending on the
renficuvatign yn tp eiaht transducer parameters
can be measured at each location and monitored
at the SDPM. The AMS includes Micro Processer
Based SOPM which is located remotely from the

transponder module and its associated transducer,

Capability is available to monitor up to 1152
transducer sensors utilizing a frequency-shift-
keyed signal to sequentially interrogate each
individual transponder and using FM modulated
tone responses to transmit data back to the
monitoring module. A display panel provides an
LED cell-fault matrix that indicates transducer
status and alarm when an out-of-tolerance
condition exists. Specific sensor parameter
values may be displayed for any selected
individual location with the out-of-tolerance
parameter identified. The built-in printer
provides capability for hard copy location
parameters.

SYSTEM DESCRIPTION - AUTOMATIC MONITORING SYSTEM

The Automa*ic Monitoring System (AMS), Figure 1,
provides sensing and monitoring capabilities

to indicate sensor conditions for any type data
where a sensor (either passive or active) can
be installed. The capability to monitor any
number of sensor utilizing a Frequency-Shift-
keyed siqgnal to sequentially interrogate each
individual location. Modulated tone responses
(FM) transmit data back, including out-of-
tolerance respanses. The system consists of a
SDPM, Figure 2, and individual transponder
connected by a two-conductor signal bus. The
SCPM is remotely located from where the
transnonder probes are installed. location of
sensors depending on the measurement
confiquration, up to eight parameters can be
measured at each location and monitored at the

53043-5007

SDPM.

The SDPM panel display provides and LED cell-fault
matrix, Figure 3, that indicates an out-of-
tolerance condition at any location. Specific
parameter values may be displayed for any selected
individual location, with the out-of-tolerance
parameter identified.

A built-in-printer provides capability for hard
copy of transponder/location parameters.

SCANNER/DISPLAY/PRINTER MODULE

a. Converts line voltage to the required DC voltages
for the data processing and display functions.

b. Sequentially interrogates each separate
transponder, one transponder for up to eight
Sensors.

c. Compares the averaged data received from the
transponders against established limits and
initiates an alarm if the 1imits are out of
specifications.

d. Displays selected parameters and alarm
indicators.

e. Prints out data parameters automatically or on
command including date and time of day.

The front panel of the SOPM contains a combined
power ON/OFF switch. Display matrix for all
location and Industrial Readout from any location.
Printer and key-board to change data limits and
request print out time and other program
requirement .

Power supplies, telemeter electronics, data
processors, and memories are contained within he
metal case. Three connectors provide interfaces
for power, signal bus, and remote output
fncluding RS-232.

The display, Figure 4, provides both fault
monitoring and individual location monitoring with
built-in test validation. If one or more
individual cell's parameters are out-of-tolerance,
and LED will be illuminated in all-cell matrix
display. At the same time, a parameter fault light
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will be illumincted in the single location
display along with indicatiun of the number of

the location being monitored and the parameter
values for the sensors at each cel! with the fault
indicating the specific fault.

The built in printer can be c.mmanded to print
parameters for all location ar on'y the selected
location being monitored an the single lucation
display. Print can also be programmed for
periodic readout and ror automatic readout at the
time of a fault determination. A piuaa and
interface is provided for RS-:I12 bus to use eirther
a modem or computer intarface.

TRANSPONDER SENRSOR MOTU.E GERESAL DESCKIPTICN

The Indivizual Trarspornger Senssr Moiules ind the
central urit .7 the sysiem are connected by a
2-wire sigual bus. The Transprerder Senser Midules
are wired in parallel -~n thke hys, Commuedicatiocn
tetween the central uoit and Jraunspender

Sen<or Moduies s Fanc @ oreding to a celle that
is receates af regilar antervale, The module is
shown in Figure Z

During a cormunication cacte, the drdividaal
Transponder “ensa- Mzoles are sequentia’ly
activa*ed snd intareacated by means L0 2 frejquency
-shifteve ! sinal that e gereratet by the
central uri: Cantr Tpeqngnpundes Senas “oiule
reSpuNnGs T 1 Lniinue aldeens gy Lelect :
switChes. Ire
?he llE’fTru' .'-:' ""'.i, Il". Fatpdan

vtaprongbe Sorruged e

125 bz niiaat THE b Y acbr mpay

clacking syt 4 ®hae  pane s o

e K T S [OrL S s
an identification [R5 1 o0 A, RS - |

peagrct o dats oegrior regaest, fo b oa ptank
time period far refpecing faty

The data fram & lransi = ier “engar Madgle is
seat back 3 the certral net Lo oo freg.ercy
Apdalated Sisawh fo the warges st 30 2 BNSS
Tarhnical enac T fearinng, mcoeipryam, and
aperating instegetigey for *hp certral anit are
rrevide! in A sepdrvate wancal

TRASLPORI . TURSORONSTLD PURe T LRGSR TRTINN

The "R 0 “eaniparter “enss” Madule nas a single
circuit Beard Witk ree fanctionral blucks. The
Power, Tar oricatrin, ant Contes] Blgeh consists
Gfa mod o, aliress seiectiog cwitches, bus
isplation ant cannector. Tne
Measurenert 20k cornigts S f 1 oralative numidity
SeNSur, ‘erpeeat el a0t 00 an low power Signdl
conditinnirg electrorics for both sepsoyrs.  Figure
& shows tha fuyn,tinna! diagqram of the module.

trynnfartoe

Pawer, fomnanication, and Controd Bicck

a. The riddule drtngrates the folluwing functions
in one YLS1 chap, The incnming interragate
signal, F5% 2.5 V43 ¢4 107 by, iy taken nff
the buys transfirmer and rauie?! tn two rectifiers
to produce unrequlate? 17 vo0. This is used to
Tnad two 170 wric=y Faragd capacitors that are
connacted t These capatitors
provide the eaer o required hy the module ited

the module.

and by the conditioning electronics circuit.

Curing the time that the interrogate command is off,
the capacitor voltage decreases to approximately 2
vee.

The incoming signal is alsc decoded and passed to
the device address comparator. [f the address
correspands ty the code preset on the TP-129
switches, tne mndule activates a requlated & VDC/2
mA output tc power the conditioning electronics.
The activatign time depends non the instructicns
ceded in the interrogate signal. The module has
eight inpits rhat can intertace with the voltage
outputs {1-3 vOC) prcvided by one or several
conditioning electronics. In the case of the
Standar? Missile Sensor Moiule, anly two inpute
are being use? (humidity and temperature).

The remairing six inputs are available on the
conneztor for fyture use. During a communication
cycle, data fram the eight inputs is sequentially
transmitted back to the bus transformer, accoerding
ty the instrecticons ov *the interragate command,

Megsurenent 5ok

t. The relative humidity sensur is a Potronic

MYGROMEL £ capacitive wensur. [he temperas‘ure
serssr is a Teras instrumerts silicon sensnr
madel YLD O120F

he enrsitianing elactranics circuit 15 powereld
with tre 7 Y0 vequlated vi.itane supplied by the
todule,  The circuit draws a macimum of [ mA,  The
two Tinear [0 veltane nutputs have 4 range af 1-%
Yaotnreesponding to 0-177 Pelative Humidity {04
and G130 deg £ The circat® must Le powered
10 wser tn peavide ¢orrect dutpnut

Bipeapr ROV g
HYDR S t

sinnals,

HOMIDTTY SENSOR DESCRIPSIOY

The HYGROMER huidity sensor 15 g sma'l hyarascpic
capecitor that modifies its value as a4 functir of
heth the water vapor pressare ard Llemperature of
the environment., This prermits direr® measurement
€ relative hamidity after precise calibratinn

GF the qensgr with tatiangl Bureas 0f “tandards
B veferences.

a. Gensur lesiqgn. HYGROMEE sensurs consist o f 3
thin s*rip cf hygrascopic polymer entlosed

hotween two porgus electr des. “his desigr enables
the interchange of water m-lecules through bt th
surfaces of the sensor. Other capacitive sens.ars
Hse a non-porous ar non-hyarascopic suhstrate

that supports a thin fily of polymer and a4 set af
electrodes. [Lecause of *this substrale, waler
molecules are essentially absurted through only

one surface of the sensor.

b, Pertirmance. Both the mechaniial design of
the HYGPOMEP sensors and *=p nature f the polymer
used in the sensors, proviie faster and more
unifarm absaorntion af maistyre than in canventiunal
sensars. Improvement of <ensor perfarmance 15
significant, especially at high haeidit, . [yen
when aperated close to condensation for hours, the
HYLPOMER sensars do not show a s1gg3ish response
or ‘creening up’ of the hunitidy cingnal, When
huymidity copdrtians are retuced | there 15 o
resuirenient far 1 recover, perind to return the
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sensg to i1ts ariginal calibration. As a
consequence, sensor hyileresis is exceptionally
low and this results in excellent repeatability
of measurements.

c¢. Greater Qurability. Careful selecticn and
control of the materials used during manufacturing
result in a humidity senssr resists
condensatizn as we'l a3 a wide array of industtial
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output far 40-170 deg.F. with a accuracy of + 1.5

deg. ©. The sensor has long term stabhility of 0.5
deg.F. ur better and provides accurate data
within 10 seconds.

CALIBRATION OF THE TRANSOCNCER SENSOR MODULE

a. Factory Calibration. Each transponder senscr
module is carefully calibrated both faor Lamidity
and temperature. Because of the high sensitivity
af relative humidity to temperature, calibration
1s doane at roon canditicns *that are stable to
within 0 2 deqg.C. At 25 deq. C, this provides an
accuracy of +/-2" R gr better uver the full ranqge

.

i humidity. Special calibration with a stability
of 0.979% deq. € at temperatures cluse to &% deq. €
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TWO-WIRE AUTOMATIC REMOTE SENSING AND EVALUATION SYSTEM

Q: Steve Baker (Qakridge National Laboratories): The concept looks
very novel, do you have any plans to commercialize it or get someone
to commercialize it in the private sector?

A: Ernie Dahl: Anybody that wants 1t for the Navy or the Armed
Forces can do anything they would like. The commercial use is un-
defined as yet because it has so many uses. There are companies in
the San Francisco area that make the units and have asked for permis-
sion to sell it commercialiy. We said yes. And they are going to co
ahead with it, but there is a license involved. It has an applica-
tion; a hotel with a fire alarm and smoke system; you just put on two
wires and run all the data you want from every area. There are lots
of *hings you can do with it. It's three to four years old from con-
cept to the hardware you see here. Also for Tomahawk containers, a
meter 1s removed and a gas sensor screwed into its place. One of
these sensors, by dispersion technique, will measure temperature,
humidity and oxygen inside the container. Those are working now.
There are standard missile units that measure humidity and tempera-
ture. So 1if you push the button that says cell read, you'll see it
read out all six sensors. Each time it takes data, it reads out.

0 Roger Noyes (EG&G, Inc.): You talked about taking real time data
and yocu talked about making acoustic measurements. Can you talk a
little bit about the response time of the system?

A Ernie Dahl. When we fire a missile, real time data is data that
can r~ad off. The way the oscillograph is producing a record it takes
a couple of microseconds or longer for the data to reproduce on the
paper. That 1s still real time data. The way this is set now it can
be programmed any way, 1t can be programmed so that when something
goes wrong 1t immediately starts the alarm and does it, otherwise
there is a delay of maybe two or three seconds in the data. It
depends on how many probes are used and how the microprocessor is con-
figured. There's a piece of paper on the back wall. If you look at
that, it shows 128 cells reading out. It takes about 30 seconds to do
the wheole thing. The time element 1is restricted by the speed of the
printer, not by the speed of the machine. That's why we've gone to a
new printer that has five times the speed, prints in both directions
and prirts a little more data. We're talking about a concept. You
can change it any way you want to get data.




EVALUATION OF A DIGITAL DEAD-WEIGHT TESTER

J.R. MILLER III and D. E. Woodliff
U.S. Army TMDE Support Group
Redstone Arsenal, AL 35898-5400

ABSTRACT

Evaluation of a commercially available digital
dead weight tester is presented. This pneumatic
instrument, using an electrical dyndmometer, has
been tested over its range and found to be very
linear. Several important characteristics were
tested such as  hystersis, repeatability,
temperature effects and vibration sensitivity.
Direct dimensional measurements of cross-
sectional areas allowed comparison with
manufacturer's conversion constants which was
within 1.9 or 100 ppm.

I. INTRODUCTION

Why a digital dead weight tester? What's the

advantage?

To answer these questions one must be familiar

with dead-weight testers--they are accurate
standards for pressure measurement; however,
they are manua! instruments not capable of

interfacing to a computer.

Since use of the computer is desired it would be
good if a dead-weight tester, dwt, did have a
digital output; one nas recently been
offeredl. We have bhought one of these
instruments to see how good it operates.

This paper will present the results of our
evaluation.

A simplified description of the instrument is
given in the next section.

[I. GENERAL DESIGN

The device uses precision piston-cylinders that
are closely fitting to establish the cross-
sectional area exposed to the pressure to be
measured. The force caused by the pressure
acting on the piston is measured by an
electronic dynamometer (see Figure 1). The
dynamometer not only measures the down-ward
force, it also maintains the piston in the
"float" position. There is a digital display on
the front of the device. A small motor rotates
the piston relative to the cylinder to eliminate

static friction. The device is
pneumatic pressure measurements. There were
two pressure ranges provided. The dynamometer
has a full scale read.ng of 60,000 counts with
a least reading of one count. Further details
are given in Table 1.

intended for

EQUATION OF OPERATION

Since the dead weight tester equation* is

P =mg (1-Ra/(b)/ (A, 980.665 (1aT) (1)
and the dynamometer is simply a device to
measure the force where

F = Mg (1-Ra/Kb)/980.665 (2)

which when applied produces a number of counts
hence

P/counts=F /(Aq(1+))=C/(1+xAT), psi/count.(3)

Provided with the machine is a set of six 1 Kg
weights, Class S2, very accurately known so
that periodic checks can be made on the force
measuring dynamometer.

I1I. EXPERIMENTAL RESULTS

A. LOW PRESSURE PISTON-CYLINDER

Using values provided by the manufacturer we
compared the instrument (cross floated) with a
pneumatic dwt 3905, P534-{21055). See Figure
2. The results were not satisfactory. This
lead us on a journey to find out why this
difference. The first thought was to check the
dynamometer more thoroughly, i.e., check it
between the 1 Kg points to make sure it was
linear between these points. To do this we
used up to 77 weight combinations using the CET
weights and the 1 Kg platters. The results
were fit to a straight line using a 1least
squares program. A plot of the residuals from
this curve fit would then test the lincirity.
These results are shown in Figures 3 and 4.
There is a peculiar pattern to some of these
residuals and some are more than +1 count.
This was not expected -- there was either

*Terms explained in Appendix.




TABLE 1. CHARACTERIS

Range

Pressure: Depends on piston
Force: 0 to 6 nowtons
Counts: 0 to 60,000

Piston-cylinder (SN 269) A
Pisten-cvlinder (SN 3397) '\o

Temperature coefficient of AO

Piston-cvlinder materials:
Piston-cylinder design:
Deformation coefficient:

AO determination:

Error limits *+ (0.005% F.S.

Weights:

TABLE 2. PREDICTED

TICS OF DIGITAL DEAD-WEIGHT TESTER

-cvlinders (0 to 300 psi, O to 45 psi)

Y
0.30396546 in” (manufacturer)
0.044084258 in2 (manufacturer)

1.96106 cm?
0.286414 cm?
9 pprm’oc

Tungsten carbide

L}
]

Re-entrant

Insignificant (manufacturer)
Cross-floated (manufacturer)

+ 0.005% of reading) (manufacturer)

Class 2, true mass values (manufacturer)

COUNTS VERSUS ACTUAL COUNTS

Nominal Applied Predicted Actual Actual-Predicted,

Force Force,_lbi. Counts Counts Counts
1 lhl 0.998798 4535.80 4536 0.2
1 lhr + 1 Kp 3.201085 14536.97 14537 0.03
2 Kp 4.404576 20002.33 20002 -0.33
1 lhf. + 2 Kz 5.403374 24538.14 24538 -0.14
} K 6.606861 30003. 49 30003 -0.49
| Ihf. + 3Ry 7.605659 34539.29 34539 -0.29
4 Kp a.809i48 40an04 .63 L0004 -0.65
1 lbr + 4 Kp G, 87946 44550, 46 L4541) =0.46
3 Kg 11.011435 S0005.81 500005 -0).81
1 ]hf + 3 Kg 12.010233 54541 .62 54542 0.38
6 K¢ 13.213727 6N005.98 60007 0.02

12
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something wrong with the weight values or the
analog to digital converter or force transducer
in the dynamometer was unlinear.

We designed a weighing sequence to see if the
problem was the weights--used six 1 Kg weights
and find slope of curve, then insert a weight
(the same weight) between each 1 Kg weight,
find the residuals and see when the peculiar
pattern developed. This idea also had the
feature we could use values for the weights
independent of the calibration laboratory since

Slope, fAcounts/mass = Counts/ mass = Cp-
C1/(Ma-M1)

the added weight would have a systematic error
hence slope would be unaffected.

Another way to ferret out this problem was to
presume perfectly linear response and plot each
weights response--we tried both these schemes
but eventually used the latter.

An application of six Kg mass (apparent mass
versus brass, i.e., the buoyancy factor (1-fa
b) has been allowed for) produces a force of

m(1-€a/€b)g/980.665 = m(1-€a/Cbr979.626/  (2)
980.665

= 13.213727 1bf

which when placed on the dynamometer gave a
full scale reading of 60,007 counts. Since the
instrument was zeroed with only the weight
table on it the slope of the line through these
two points gives

4541.2623 counts/1bf

Now using this value one can calculate the
predicted counts for a certain applied force.
This was done and results are given in Table 2.

During this time it was discovered several
problems in the mass calibration lab explained
some of the problems with a few of the CEC
weights, i.e.,

(a) Some of the weights were weighed on the
iow 10% portion of a scale.

(b) The 4 oz and 0.3 oz weignts taken to
another scale showed a surprising disagreement;
much larger than the error limit quoted--this
undoubtedly contributed to the earlier peculiar
results.

Jased upon the very good results given in Table
¢, we decided to repeat the entire pressure
intercomparison with another better calibrated
dwt. However before doing this we decided to
do a direct measurement of the diameters of
piston and cylinder, calculate Ay and come up
with a conversion constant. Table 3 gives the
values from which we obtain

17

Ro=(Ap+Ac)/2 = 0.30396546 in? (5)

which is within 1.9 ppm of the manufacturer
value. However note that our ability to
measure the dimension is 10 micro inches (=4D)
hence since

ﬁo =WR2=€{)2/4

Aho =QJAgas  (T172) DAD
Y
Ao = 9.8 * 1076 in2

(6)

and the difference in Ap's 1is 1/10 of this.
This means we may have merely been lucky to
obtain agreement this close.

Using this wvalue for Ay (at 209C),
pressure conversion constant is

our

2.2020305%10-% 1bs/0.3059649 in2
= 7 .2443579%10-% psi/count

The manufacturer gave a conversion constant of
7.244086*10-% psi/count which is different by
37.5 ppm--we do not know why this difference.

Comparing
range 0.5
this with

to a Ruska Owt over the pressure
to 15 psi with one piston and above
another piston produces a very good
agreement and is entirely satisfactory (see
Figure 5). Note the up and down runs provide a
hystersis test--and there doesn't appear to be
any hystersis, to within the resolution. In
all these measurements, all known corrections
have been applied, air head, and temperature
corrections to each dwt; however, a constant
value for the bouyancy effect has been used.

Since the digital output format ({and connector)
was strange we never did get the device
connected to a computer--all data was taken
manually.

B. HIGH PRESSURE PISTON-CYLINDER

The other piston-cylinder goes up to 300 psi
and has a pressure conversion constant of

4.99505*10-3 psi/counts
given by the maker.

Direct measurements of Ay produces the values
given in Table 3, where the agreement is not as
close as the other piston, undoubtedly limited
by our dimensional measurement resolution.

An intercomparison with the aforemention.d
Ruska DWT produces the results given in Figure
6. These values are completely within
expectations--the only notable thing is the
instrument 1is considerably more sensitive to
vibration. By isolating and taking pains with
the input pressure line vibration influence has
been minimized.




SN 269

SN 3394

TABLE 3. Piston—Cylinder Dimensions

Low Pressure Piston—Cylinder

Cviinder
Top  0.62212"

Bottom 0.62212"

Ao = 0.30396546 in”~

High Pressure Piston-Cvlinder

Cvlinver

Top 0.23694"

Bottom 0.23694"

A, = 0.045088974 in”

Piston
Top 0.62210"
Middle 0.62210"

Bottom 0.62210"

Top 0.23692"
Middle 1.23692"

Bottom ().23692"

Aol.}H B Af;;.:m\' * 100%

Nominal
Low Pressure = 0.00019

High Pressure = =N.0]
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Since this piston-cylinder is oil lubricated we
tried some lower viscosity oil and even used it
with no oil to reduce noisy readings; however,
we discovered most of the noisy readings were
simply due to vibration from the bench or input
{ pressure line.

. TEMPERATURE EFFECT

We tested the dynamometer, with a constant
load of 4 Kg, in an environmental chamber from
13% to 330 to see if it was affected.
Figure 7 gives the results. It appears the
dynamometer is affected by these temperature
cnanges even though it is supposed to be
independent of temperature change.

AC KNOWLEDGEMENTS

[t is a pleasure to acknowledge the assisitance
David Catlett gave in taking some of the data.

REFERENCES
(1) DH Instrument Co, Tempe, Arizona
APPENDIX

DEF INITION OF TERMS

P = Pressure, psi

M = Mass, lbs

g = Local acceleration of gravity,
can/sec?

‘(a = Density »f air, gam/cm3

Cb = Density of brass, i.4 gm/cm3

Ao = Effective cross-sectional area at

zero pressure, in

A = Temperature coefficient of expansion
of piston cylinder, parts per million
per degrae 7

A= T-R, temperature of use - Reference
temp, o

D = Diameter of piston or cylinder, in

21
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DEVELOPMENT OF A PROTOTYPE SYSIEM

FOR THE

IMPULSE CALIBRATION OF MICROPHONE S

Dovid L. Mutlendore
Viee President
Daston Scaentafic
Davton, Dhio
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calibration which wauld use a single pressure
impulse as the itnput to g microphone being
calibrated. Ihe response of the microphone to
the pressurs 1mpulse wanld 1then be recorded and
Fourier Transform techniigues used to determine
the frequencs and phase characlteristics of the
microptone.  1f surcessfoal, this technique could
b amplemented with relat ivels inexpensive
hardware, 1t would be s le to adapt to field
use, and the calihration could be performed
quickis.

The primary performance goals of the
Ffalibration Unil were ao tollows:

Impulse

Bandwidth: 10 Herte tao %000 Herte

Acruracy: +/- 0.5% dit

Amplitude Pange: to 170 dB Sound Pressure
level (SPL

Repratability of Calibration:  + - 0.7 dB SPL

DEVELOPHENT PROGRAM

Design af the Pratot ype
Hardware

Impulse Calibraton

Toe 1nitial wotk on whieh this irvesligal 1on 15
based was conducted by the Structural Vibrat oon
and Aroust ies dranch of the Flight Dyvnamies

| aboratory, WRAFB, Ohi.  The general approach

wits to rreate o pressurs ampulse within a closed
evitnder, 1nto one enad ol worch s placed the
microphone to be calibratea,  The micropnong

nutput o 1t response to the ampulue tnput, 15 then
analyzed using transtorm techniques to abtain the
froguency and phase recsponse of the mu rophone. A
Freguees
characteristwes are kivwn s also placed an H
iy Linaer.

reference microphone whioea

Ihe pressure wmpulse e creasted by striking a

suspended piston which occapies the end of the
closed  vlindrical cavity opposite the
micraphone,  As will be shown laler, 11 s
tmportant that b pressure pulse be of
redatively shart durat ton so that ot will have

Sl Frepent
permil

gty frequencs eaergy content to
baurer Transform analysis to be reliable







T IGURE 3
VIEW OF CYLINDER AND PESTON DISASSHEMBLED
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Thee successlul applicat ion of the ampolse
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The frequency resolulion of the TR caloulation
1s equal to the inverse of the record length

(sample antervall. It 15 also desirable for the
record Lo contain i number of samples which 15 a

pawer nf twn. Therefore zeros were added to the PISTON IMPACT W

data recards to make 256 doata points or the
equivalent of o 2.5 millisecond record,
resulting anoa fregquency resolutton of 390 Hz.
Ihe areasyre rise withain the cylinder cavity
resutbang 1eom an impact can we caiculaivy vy
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whi-n the pistan 1 struck,  The change in cavilty
volume s direct by related to the displacement of
the piston, as shown by expression 740,
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DEVELOPMENT OF PROTOTYPE SYSTEM FOR THE IMPULSE CALIBRATION OF
MICROPHONES

Q: Bill Cardwell (GE, Evandale): On the calibration in the first
part of your talk, you talked about putting an accelerometer on which

nart A Fha maictAan Ay what?

A: David Mullendore: ©n the pisten.

Q: Bill Carédwell: Did you try putting one on the stable part also to
see 1if there was .nv reaction that way?

A: David Mullendore: Mo, that's a aood suggestion. We did not try
that. We used the accelerometer that was mounted within the piston
to try to characterize the movement o1l the piston. The one set of
data we did extract was te do a double integration on the ac ~ation
to get a mathema*tical wvalue for piston displacement and then to relate
this to the change in pressure within the cavity. It turns out when
we did that we were able to correlate the change in pressure with the
pistcn d4°snlacement to within about 20% error. That doesn't sound
very good until you cour-“der that we achieved this with a doukle in-
tegration of the accelerometer signail. There was some high frequency
vibration in the accelerometer signal, as you might expect. Wuen you
have an impact, that tends to bias that displacement. We were able to
correlate to within 20%. This is over the full range of impacts we're
experimenting with which was from about .02 or .05 psi to about 1 psi.
But we did nct mount an accelerometer on the outer cylinder.

Q: Bill Cardwell: The data that was shown on the final chart, is
that with using the modal hammer or the ball dropper?

A DPavid Mullendore: That was obtained using the modal hammer, we
can't see much difference in the data for a given impact level. There
seems tc be little or no difference between the two techniques as far
as the results are concerned.

Q: Bill Cardwell: Your final thought on this; do you think this
provides you with arn easier way of calibrating in the field other than
using the pistcnphone?

A: David Mullendore: I think that if it can be shown, and there may
be some moure work invoived here, that the data totally correlates with
conventional technigues within the limits that are expected for this
type of calibration, which were plus or minus a half a dB, it's a very
quick method. In our work, most of the time was spent not with gener-
ating the data bnu*t with analyzing the data. You generate the data 1in
about two seconds, as long as 1t takes to pick up the impulse hammer
and mak= an impact, or 1f you want to make multiple impacts and
average the data, that takes a little b t longer. If you would write
special software that did the analysis rather than trying to use a
standard package which regquires some 1interaction you'd have the
results in probably 10 or 15 seconds with a standard AT computer.
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From that point of view, I think it does lend itself to field use.
The speed with which the results are obtained is one of the things we
were after.

Q: Jim Faller (Aberdeen Proving Ground): 1I'm not totally familiar
with the subject, but I had a question about the energy level. You
weren't getting enough energy over a bhroad enough frequency range, and
I was wondering what your strategy was to achieve this?

Al Cavid Mulle: dcre: The original stratagy wag to make the impulse
as short as possible, and I guess that still is the strategy. We may
be up against some fundamental limitations there. I'm not sure we

know for sure.

Q: Jim Faller: Did I misunderstand the gquestion then originally,
that you weren't gettinn enough output?

A: David Mullendore: I think what I tried to emphasize was the dis-
tribution of energy throughout the frequency range that we were inter-
ested in., which was from essentially 10 hertz up to 5 kilohertz. It's
not a question of enough output but the distribution of the output.

Q: Jim Faller: So, if you narrow the range you don't have to worry
about distribution, 1is that right? You say the distribution is be-
tween two and three kilohertz?

A: vevid Mullendore: If you would accept the one to three and one-
half kilohert: range as that in which you were interested then we
wouldn't have to go any further, I guess. We're after a broader range
than that.

8 Jim Faller: Does the modal hammer influence that in anywav: the
construction of the modal hammer, the materials of cor truction?

A: David Mullendore: Yes, as a matter of fact. We did not actually
have a direct steel on steel impact. There was about a four mil plas-
tic interface between the modal hammer or the steel ball when we
dropped it and the impact point on the piston. Without that we would
generate a lot of extraneous vibrations in the piston. They seem to
center around 16 kilohertz, which is outside the range of interest.
It didn't interfere with the work that we were doing, so the four mil
polyester, more like six mils, interface did suppress those. We ex-
perimented with other materials and other thicknesses. We're at a
point right now where we'wve kind of optimized that part of it, as far
as the weight of the modal hammer and the material, whether it was
steel on steel contact or with some kind of a dampening material in
between. We probably have some other things we can try there but the
results that you see are where we are right now.

Q: John Judd (Vibrametrics): In the last curve you had up there, was
that the ratio of the microphones?

A: David Mullendore: That was the frequency response of the unknown
microphone alone.
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Q: John Judd: I wondered if yocu had any coherence data?
A: David Mullendore: I did have some coherence data, We did some

work with coherence mid-way through the program and the data showed
about a .98 coherence up to about four to five kilohertz.
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ABSTRACT

The aenerai 'rend towards increasingly .arge numbers
of channe:s ot sensots has nlaced tremandous burgens
or the calinratcr gspect of testing  The need to
accurately measuie rotational degrees ot freedom also
generates n2vy probiems w.lh corventional calibration
methods 0 ar efion 1o solve these preblems, two novel
~ahprat.on sysiems are Lncer development at the
Umversity of Cecinrat. Utiizing the simplest and most
intutive of all structures. the rigid body, the calibrators
can provice cuicker calprations and total motion
information. Facn caibrater rehes on the underlying
assumpticn at the meas.red sensor outputs must
resu't from mcton sons'siing of seme inear combination
of the =is “indamanial ;1 g.0 body modes However,
fynnd thie premiga g0t caunsator csas a cifferent
constrectinn ard sewhon metinod 1o achieve s end
result.  The fast concurrent caibrator (FCC) method
calculates ast squares type estimate for the pnimary
axis of sensitvty tor up tn 256 Strucice! moton sensors

at e e Sching an cverdetermined multipie-input
~yitpe-catnet MIMODY protlem. the total motion
~atoeator (TRICS wses 24 reterence accelerometers ano

iC
“eoanawn geometry of the plattorm to calculate the
¥ a2 lszancr cf the test serisors. Thus, a
Jsinul can b2 cdlidrated against any or ail

Soaal meLer

ract senNer:

e s O npints
INTRC 2 TN
The fast concoaant Saharaten system provides a quick

and ec._rsantal method  for batch processing
ralibraions. Sane coy Lo pnmary axis of sensitivity 1s
neeged n g 230 maasurement applications. the
catibrater's wetaticr means and soluton aigonthm
have been optimized ic rroduce single axis calibrations
for a iarge n.mber ¢. sensors in an efficient, cost
affective manner "¢ FCC system functions to
rransform (o meciurag signals from an array of motion
5ensors nto a test i ngid body motior (ref 2). The naid
body motion and the ~eqsor's geometric IoCaton ther
dictate the sensor s appropriate sensitivity.  Traceable
sansitivities are referenced to precision quartz sensors
and up to 256 Strucicel motion sensors can be
calbrated at a «ingle t me

Providing more sensitivity information, the total motion
calibrator (ret 3-4) requires a large number of reference
sensors and at least six shakers to adequately excite
and measure all six degrees of freedom. The TMC
functions to transform 24 measured linear accelerations
(8 tnaxial reference accelerometers) into the primary
rngid body accelerations oi the platform. A simple
geometric transformation then calculates the exact
motion at the base of each transducer under test (ref 5).
This allows the MIMO estimator to produce the sensor
sensitivities.

SYSTEM CONFIGURATIONS
Fast concurrent calibration platiorm-

The neart cf the calibration system consists of a ngid
platform which connects to an number of electrodynamic
shakers. An aluminum alloy block milled out in a waffle
pattern to lighten, yet still retain strength, forms the 12
inch by 12 inch by 2 incn, ngid platferm. A number of
iterations of finite element analysis provided the basic
plattorm design which has its first resonance at 1200 hz.
As stated in the previous section, the calibrator operates
on the assumption that all measured motion consists of
a inear combination of the rnigid body mode shapes
The true rigid body motion frequency range extends to
about half of the first resonant frequency. Hence. the
useable frequency range of the present design extends
to just about 600 Hz. Future designs of the platform will
include ultra-stiff, light-weight composites to greatly
extend thc useable ngid body frequency range.

Providing mounting for the Structcel motion sensors (ref
6-8). a gnid of 256 mounting sockets occupy the surface
of a printed circuit board. The two layer board. which is
ngidly laminated to the platform with epoxy, conveniently
routes the large number of signal leads (3 per sensor x
256 sensors) from the mecunting sockets to multi-pin
connectors at the edge of the board. The array of motion
sensors report the measured motion which will be used
to determine actual combination of the rigid body
modes The entire platform rides on soft springs with a
system resonance of less tnan 10 hz.  Sixteen ribbon
cables carry the signals frcm the edge connectors on 1o




the Data Harvester which provides the necessary signal

conditioning {power. gain and jow pass filtering) for the
Structcel motion sensors.

Four electrodynamic shakers attach at the corners to
vertically excite the platform. Each shaker can be set in
phase or 180 degrees out of phase in order to create the
different forcing vectors needed to guarantee a solution.
With only vertical excitation. the motion of the platform
must consist of verical transiation and ihe iwo rotations
in that plare  Accordingly 4 miemum of three
independent foreing wvectsts mast be apphed o
guarantee a calioraiion soivton. We assume that the
sensors do not measure in the ather directions thereby
fucusing only on the pAman: axs of sens!vily.

Total maotion calinraver raticorm
A 6 inch cupe constructia <
then filled wth srrucural ican ory«ges the .aounting
platform for tn.s aysiom Tigrier 0o weght than the
aluminum giatfo ule Debaves as a ngd oedy to
nearly 1 Knz byt 'm“ @ mush smaller sunace area for
mounung test sensors  Toa symmetric grometry of the
cube makes it ruch more sostabte for Ladorm excitation

in all degrees ot trezdom

fa base graphie iaminate

e

In order tc measuie the ~ompieie n'ouen 6! the biock, at
least 6 refarerce sensc's are neerded. Since we will
Usc only tranclalona accelarsmeiers. these must be
spatially distnbuted anag onented 1 o manner that allows
measurement of ait three rotations. One possible
configuraticn s fu measure naaual ancewration at one
point, bla«ial ace AL Anciher noint I airections
perpendicular to IM NS l»?uerr taese two points, and
a uniaxial acceleration at a third point in a direction
perpendicular to the plane containing the three points.
This represents tne minimum contigurat.on needed for
all 8 DOF  These accez-omeiers wili be called the
reference accelernmetaors, becguse they act as
calibration ciranda’cs for the canoration process, and
they are thereicre calibrated by standaid means prior to
use on the platform.

Housed i the curners of the cube, the use of 8 trniaxial
accelerometers gives 24 reference accelerometers on
the platform four tmes ihe mintmum requirement. The
resulting regurdancy 10 measunnq the motion of the
plattorm provides twe advantages: 1 aliows averaging of
the 24 measurements o1 calculating Ihe six degrees ol
freedom of the piattorm’s motion. and .t a'lows deletion
of cre cr more reference acaelerat ons from the process
!N the case that the corresponding measurement
channels are not functior:ing preperly at the time of the
calibration.  The calibraton algrrmm uses a least-
squares method for re averanin This averaging
provides the usual benelis of a fir, -ar iesolution of the
motion, a reduchion ¢ Caracm errors. 4 correfation
coetficient that indica! the reliabiity of the inherent
assumptlions in tne meiod. inG qQredier conbadence in
the computed eauit,

The excilatior method varnes
measurement '2enmigue utilized
conventional broad band techmguen

depending on the
When testing with
six shakers driven

8

with uncorrelated random noise are connected in pairs
on mutually perpendicular faces. This drives the cube
into random wvibration along all three translational axes
and about all three rotational axes. The random noise
sent to the exciters is chosen so that each of these six
degrees of freedom of motion have approximately
uniform wvhrateon over the calibration bandwidth.

Utiizing the spatial sine testing system, the shaker
configuration remains the same, but excitation occurs at
a sing'e frequency. The shakers must apply @ mimimum
of 6 inaependent forcing vectors at each frequency step
to guarantee sufficient information for a solution
Practically, additional forcing vectors increase the data
set intormation and provide a statistically more precise
danswer

MATHEMATICAL DEVELLOPMENT

The same equation iorms e pasis tor each of the
cahibration solution algorithms. The measured signals,
scaled by some sensitivity vector. must equal the active
modes times the modal participation factors.

(X1 1S} =1G] (k) (M

where. [X]_ = = diagonal matrix of measurements
{S},,, = transducer sensitivity vector
(G], 5 = ngid body mode shapes (G, GU G )

{k}.,, = modal participation factors
n = number of measurement channels

In expanded form for N measurement sets,

{ [
X, ¢ 0 o . oli®
i DK
X, 0 G 0 0!
% K,
1X, 0 0 G o‘l‘ -0 2)
! ,.kj;
i
Xy 0 0 0 Gl oy
B SN,

The benefits from working with a ngid body result in the
simplification of the G matnx.  The transtational rigid
body modes can be described with zeros and ones
while the rotational rigid body modes need only the xy.z
geometry witn plus or minus one weighiing functiens.
Furthermore, the calibration range is not limited "~ the
ngid body frequency span of the platform. If so cesired,
analytical estimates of the first flexibie modes can be
adjoined to the G matrix to extend the ci'.oration
frequency range




Currently, two aljoriitns have been developed 16 solve
the basic equation ior thie FCC syster~.  The first
algorithm develors & Raviegh guotient and reduces the
equations to a directly sclvable eigensolution.  (he
second algorithin implements an iterative least squares
technique to perform the eigensolution Both algonthms
assume that the plattunn recaives verical excitation from
a number of shakers Ex™ling only three rigid body
modes (transiatior @t 1wo planer rolatons), this
configuration A+ ot Masiaum input aiong the
sensitive axis ane: redie < the awverall calcu'ation by
requiring ooty Luee non:t i the G omatnx

Using husical: 02 2an e 2zquations 4s the iterative
techniaue, ihe TMO incorporates the knowa sensitivities
of the reterence accelerometers and calculates the best
rigid body with & wi et ransformation in alt € DOF. A
secona grometre tiansiormaticn prevides the exact
maotion a‘ the bass i the test sensor. Finally, the
algorithm amupioys a muigle-inputimultinle-output
frequeray responis &3 s 10 dete: mine the sensor's
QUIpUL FRSLLHSE AN s o each of the 6 calculated
inputs.

FCC direct s.cution-

Reformudatiig (.0 su t o creres 1he minmal number of
equaticns for the rumbna of inknowns { {5 and (k) ),

\ I il

5 vy

£ X R RS B 13)
._rl. O

X, !

where, the subscndis ncheate the neasurement and
asscciated o sdai paracipation facars for the respective
foroing pattern  (T7is renresents the minimum number of
medsurements rzedad o colve 13r the sensitniies.
Thera moust he ol easi noo aguanon 1or each ngid body
mode excrec. More meas L qem2nts May O« USea and
will reqll o doeast sauae s lype estiiinater,
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the Euclidian norm of k. By rainimizing the error with
respect to K. we can set up a Raleigh Quotient type
problem such as,

! \ B, 1
TPRT T i 5
| o 1 BH | JllL KJ
min = — ‘-'_,'t; Tl',',"-—] [6}

]: 'K S El’ S

: | [S” K I = ’
;| .l ” : | ) !
\ J /

where

Bt X,MG!I XMGI . X MG’

1=1G1" 1G]

The physical interpretation of this is to minimize the
strain energy while maximizing the kinetic energy
Since we know that the structure 1s a rnigid body in ‘e
frequency range which we are exciting, this minim zation
technigue shoula result in tie best fit of the data.

The kinetic energy term is strongly related to K (the
modal participaticn factors of the rigid bndy modes) due
to the fact that the Euclidian Norm of K is a direct
function of the coordinate system’'s velocity squared
{unity mass or symmetric mass).

In order to view the error terms in relation to the internal
strain enrergy, we must lock at the error term n a
different perspective. As was stated earlier, the error
lerms are the result of incensistencies in the sensitivities.
Alternatively. this error vector could be thought of as the
recult of uraccounted mode shapes. These
unaccounted moae shapes would not be rnigid body
modes and therefore resu!t in internal strain energy,
which currently shows up as an error term.

Given these physical interpretations. naimizing the
Aayleigh Quotient tends fo make sense since under
normal nperaling cricumstances the structure used for
calibration should have no in*ernal strain energy.

Reformulating the above Raleigh Quotient problem into
a standard Eigenvalue problem,
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The solution of the Raieigh quotient prcbiem is now to
solve the above Eigen-probiem for the minimum
Eigenvalue and its associated E:genvector. As can be
seen, this is a very iarge Eigen-problem and mus! be
reduced. By expanaing the equaticns we have,

[A]1S] « IBJ 1K) = 0, i9)
St =AY (B K] (10)
and,
B AR Ky = K A (1i)

which reduces 16,

R T TR 5 KD (12)
The above Figen probem oow 15 reasanably small
(9x8: and the solution fur the imnimum Eigenvalue and
its associated Eigenvecior ¢an o= delermined using one
ot the severai Eigensoluticn methocs, The solution of
this subset rez:i: .n tha E:genvaiue wnich s not used.
and the Eigenvecter whici o5 the set cof moda!
partic:oation vectors ‘07 ¢ac” Sei ¢ monsurements B
sanstvities e mcdgal paricipaticn vector
1S back subsitutea Into equation numtar 9

1 + .
suive o7 the

FCT steratve saoubicn

Eguahun number 2, cin 5e repres=nled o the form of,

Setung up e eguation 0 oigas! sqiares form which
minimize the <rra-

and 'et
(159

The problem ¢ row to tnd the aigessoution tar the

[ATHIA| matrix whare

the diagonal matrix containing the measured signals for
N different forcing sets and.

D} = block diagonal | (G G|

with equal blccks containing the geometry of the ngid
body modes Also we know.

i | ||
€1= [ X6 Y X6y (X
-_ I‘\ kX / I, 4]

o . ‘. N -‘[

whiun is the measured s:gnar for each forcing condition
times the rigid body mode geometries. Now expanding
equaticn (14) 1nto two equatiors,

[B] {5t «CHin =0 (16)

(i sy + (Dl tk} =0 (17)

and rearranging eguation .17,
[N ¢ (o
k1= D ECTH S (18)

where n is the nt) estmate of the sensitivity vector. Also
rearranging eauation (16),

(e (B} '{CIIk} (19)

Subsututing equation (18} into equation (19), the
netative equation s,
is_ 1 =cmr oy ie’s s, (20)

“nel

where the sensitivity is normalized to the first element of
the S veator. Though inverse :cz.culations of large
matrnces can be complex, the matrices in equation (20)
are very simple because B is diagonal and D is a block
diagonal matrix with 3 by 3 blocks. The addition of a
weighting matnx to remove bad" sensors prevents a
measurement error from corrupting the best fit solution.
Setting initial sensitivities to one and using three
iterations to determine the basic sensitivity, the algonthm
zeros out any sensor with a correlation coefficient of less
than 95 percent .\ final 12 iterations then converge very
quickly deliverng a stable -alculation of the sensor
sensitivity

TMC calibration algonthm

The total matcn algorithm also begins with the rigid
body eqguatian (11 However in this case the reference
measuremenis can be scaled directly due to the
calibrated tniax.ai accelerometers in each corner of the
rube.  The laft hand side of the equation can be

condensed i~ . vector, R, consisting of the measured




reference translational accelerations. Including all six
rigid body modes instead of just three, G is still a
function of gecmetry. The k vector includes the modal
participation factors (which are the six principal rigid
body accelerations for a rigid body). Thus equation (1)
becomes,

(R) =[G] (k} (21)

where, (R} = translational ref accelerations

24x1

[Glyy, = rigid body mode shapes (6 DOF)

{k]m = principal rigid body accelerations
(modal participation factors)

Tc end up with the principal accelerations at the base of
the test sensor, the geometry is input with the origin
located at the base of the test sensor. Setting up a
normal equation of a least squares solution to utilize the
over determired measurement set,

(GIT(R) = (G]'[G] (k) (22)

-1
ki =[161"7a1] G (R) (23)

Note that equation (23) is essentially the expanded
version of equation (18) with known sensitivities and
three extra degrees of freedom. The TMC algorithm
mirrors the first loop of the iterative solution and directly
determines the values for k.

Clearly, a weighting matrix could be applied to the left
hand side to judiciously eliminate any questionaule
measurement channels. All matrix cperation can be
performed prior to testing such that a single
transformation matnix, T. wouid exist to calculate the
principal accelerations.

(k] ={THR] (24)
TR e S ] T
where, iT) .:1W|!_|G] lGI: |G
and, |W| = weighting matrix

Once the princinai acce'erations have been determined,
the estimated accglerations at any point can be
calculated by using a geometric transtormation trora the
original point. This allows for the formulation ot error
functions for the reference accelerometers and aiso
concurrent calibrations.

Using the calculated principal accelerations at the base
of the test sensor as inputs, a six-input/multiple-output
estimator determines voltage sensitivities to each DOF.

EXPERIMENTAL RESULTS

As published in a previous paper (ref 9), plots 1 and 2
examine the comparability of the rigid body calibration
method to a standard single sensor calibration and also
examine the effect of different permutations of subsets of
large number of forcing vectors. Both plots are
normalized to use channel 2 as the reference. Plot
number 1 displays first 32 relative sensitivity values tor
the hand held calibrator and the rigid body calibrator, as
well as their differences. As can be seen by the plot, the
normalized calibration value for the two different
methods are very comparable. In fact, the first 16
channel are within one-haif percent while the next 16
channels are within two percent.

In order to check the stability of the data reduction
technique when using different forcing vectors, the
original set of five forcing vectors (for one run) was used
as a base set. This base set was permutated in such a
way that the data reduction algorithm received different
combinations of three forcing vectors (required for a
unique solution). This resulted in 13 different force
vector sets from the oniginal 5 forcing vectors. Plot
number 2 displays the normalized calibratians for the
analysis set which included all permutations. The top of
the lower traces indicates that the difference between
the sensitivity vectors generated by the permutations is
generally less than four percent. This indicates that the
eigensolution is not overly dependent on any particular
set of forcing vectors or amount of additional sets over
the required three. Any set of three or more
independent forcing vectors provides a reasonable data
base for sensitivity analysis, but as usual a large set of
forcing vectors provides better statistical confidence in
the results. (Channels 45-48 were inoperative due to
hardware difficulties).

Plot 3 reports new investigation into the repeatability of
calibration values. Two tests performed a day aparn with
the sensors in the same locations each time
demonstrate a repeatability of less than a percent. A
following test was conducted removing all sensors and
randomly replacing them in the platform geometry, but
still referencing to the same sensor as before. The
maximuni vanation between this tnial and the two
previous was about four percent with most less than two
percent.

Each of these tests has used the iterative technigiie for a
sofution algorithm. To compare this with the direct
solution algorithm, a mathematical simulation was
created in a PC mathematics proyram and executed on
the raw Jata from the rrevious tests. A variation of
around two percent in average sensitivity causes some
concern when the algonthms should deliver nearly
identical values. One possible reason for the
discrepancy may be the lack of a weighting matrix in the
current direct solution implementation. Two bad sensor
channels were averaged into tne solution, possibly
causing the difference in calibration values.
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Experimental results from the total motion calibrator can
be found in reference 3. Unfortunately, the lack of signal
conditioning for the standard ICP type sensors used in
the TMC prohibited further evaluation with the recently
developed spatial sine testing methods. These tests will
be the next examinations as adequate equipment
becomes available.

Conclusions

The FCC methed ct cahbration spoears to be an
accurate way to quickly calibrate a large number of
Structcel motion sensors. Due 1o the convenmence,
users with large instailations of Structce's can use the
calibrato: not only to perform imtial calibrations, but aiso
to verify calibrations after a test i perfeimed  This check
gives iurther nsurance that ail sensor channels are
operating properly during the cntical data acquisition
phase. Money will aisc pe saved by shortening
calibrator time expaditng tests and ensuring accurate
data.

A excellent carndidate for furth2r reseaicn, the totai
moticn caliurater exnmits great potertal for future
benefitz. A smaiier scale concurrent calibration could
provide ali 6 DCF sansitivities for a number of sensors.
Transiational a~a rotational sensors could e tested for
Cross sensimviies in ine manufaciurng process and fine
tured to otovide higher pertormance sensors.  Self
calibration could also be perfcrmed by considenng one
of the reference sensors as the test sensor. Under the
presumption that most o7 tne refzrence sensors are
already weil calicrated the TMC could venty the
reference sencitvities une by cne.

Lastly, the benefits ol computer aiged testing are rapidly
surfacinc ir the iesting worid  lLarge amounts of time
and money are saved by autor.ating caibrations. Gther
research  topic nctade  futomated nformation
management tools ke barcoded senal numbers, and
archived censitivity da'a bases Many of the advances
are presently baing 'ntegrated in tc the spatal sine
testing sy~*2m uncer deveiopment at the University of
Cincirran,
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CONCURRENT ACCELEROMETER CALIBRATION UTILIZING RIGID BODY ASSUMPTIONS

Q: Jim Faller (Aberdeen Proving Ground): This is a minor point, but
when you were referring to a six-axis calibrator system, I couldn't
help thinking that using that term was somewhat inaccurate. Isn't it
six degrees of freedom, with three axes and three rotations. Why the
six axis designation?

A Michael Lally: It Jjust turns out to be the term that people
adopted. Someone wanted it to be the kinetic array calibrator:; some
say six degrees of freedom. It has gone throuch a number of ter-
minologies. That's the slang term that held in cur lab.

Q: Jim Faller: Let me ask you this; are you employed by the Govern-
ment working on a Master's Thesis?

A: Michael Lally: I am not employed by the Government.
Q: Jim Faller: Oh, you are with the University of Cincinnati?

A: Michael Lally: I am with the University of Cincinnati, and I also
work with PCB. I should say Dick Talmadge has an ongoing contract to
develop that six degree of freedom calibrator. But it had been drag-
ging. There was a very small company that it was contracted through
and actually the president of the company passed away recently, so
that development may come back into our lab just as a general project;
hopefully, to wrap it ubp. It was dragging on equipment costs and
things 1ike that.

Q: Ray Reed (Sandia National Laboratories): I had a guestion about
the potential for increasing the frequency range of the six degree-
of-freedom test. I think that you had indicated that you are able to

maintain rigid body conditions up to about 500 Hz?
A: Michael Lally: Yes, 500 Hz.

@: Ray Reed: Do you have any feel for what the range is; how far you
may be able to extend this someday?

A: Michael Lally: This is something that we are currently working
on. We've got the SDRC IDEAS work stations in our laboratory and
have personnel up to speed on this so that we can produce our models
rather quickly now. One man just went through the design of a shaker
table stand for NB Dynamics, which was a couple of feet across, and
they were working with frequencies around 2100 Hz, but they kind of
fudged it a little by saying that their accelerometers were going to
be mounted at the center, and the first mode has a node line across
the center. So they cheated a little bit and said "That's not going
to affect 1it." We are hoping that with the advanced composites
(exotic carbide graphite), and things like that coming out; I would
like to get up to a couple of thousand Hz. Again, being that we are
working with a complex structure, that is going to be one of our major
limitations on the frequency range. Just with the aluminum block, we
are hoping that we can get bevond aluminum or maybe switch to mag-
nesium, or something like that, up to a thousand Hz range.
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Q: Tom Rogers (Airborne Test Board, Fort Bragg): Is your linear
force actually eliminated or is it such a small value that it is in-
significant to your testing?

A: Michael Lally: Linear..... I am not clear on your gquestion.

Q: Tom Rogers: In your slide you said that you had eliminated the
linear force on the vibration testing?

A: Michael Lally: Now what we are doing 1is exciting with six
shakers on the six degrees of freedom and measuring the resultant up-
ward motion of the block. There are both linear forces and rotational
forces. We are putting it in motion, using linear force in all degrees
of freedom and then we are measuring the rigid body motions of the
block with reference accelerometers. We are determining the transla-
tional measurements and applying a geometrical transformation to get
our rigid body rotations, and then we are saying that this is the mo-
tion of the block. I don't know if that clears it up but we are not
measuring any forces on it.

Comment: Pete Stein (Stein Engineering): One of the fringe benefits
that you get from the proposal using a sine wave and being able to
slow down the rate of frequency change as you apprcach your resonance,
and almost totally avcid the so-called swept frequency effect, where
you would get wrong data at your resonance if you swept through it too
fast.

A: Michael Lally: We are using a step sine approach. We are dis-
cretely stepping through a frequency. We can adaptively control all
of the aspects. It helps so that we don't destroy whatever we are
testing. We can reduce our levels.
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INTRODUCTION

There has been a long-standing need for a
means by which the response of stress and
motion instrumentation designed for fielding
in cratering and groundshock experiments can
be experimentally validated. A high quality
validation would require that the
instrumentation be embedded in a geologic
material of interest and subjected to stress
and motion fields representative of those in
which the . ."== antstion is to be £':lded.
In addition, a true va.idation would require
that there be some independent means for
relating some measurable standard to the
actual stress and motion fields produced in
the validation experiment.

It is generally accepted that if there is an
overall consistency and agreement among many
gages of different kinds (stress and motion
gages as well as different kinds of stress
ganes and different kinds of motion gages)
tielded over a range of envirenment levels in
a test eveni. then one can establish a good
level of confidence in the results (especially
if they agree with someone's prediction
calculation). This internal consistency
feature of the results prevides a kind of
validation. This approach is appropriate and
is an essential part of any posttest analysis.
In general, however. traceability to a true
standard (other than time base) is not
available Thus, the credibility of the
results is always suhjective and the degree of
suhjectivity is dependent on the consistency
of the results - which is not always good.
Pretest validation experiments in which
traceability to a standard is provided would
add greatlv to the credibility nf the
instrumentation systems fielded in weapons
effects experiments  This would not
necessarily eliminate inconsistencies between
gages but it would allow one teo evaluate and
analyzc resulte againet the knnwledee thar a
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particular gage type had teen validated in a
well-controllied walidarion expetiment.

The Weapons Laboratoryv (WL) has developed the
large explosively-driven flyer plate rechnique
for evaluating and validating the response of
stress and motion instrumentution in a variety
of geologic materials. Thus far, the
technique has been applied to dry soil and
rock geologies. The technique for drv soils
is very well developed and several validation
experiments have been conducted. The
technique for rock geolegies is under
development and several small -ale
exploratory experiments have ._en conducted.

This paper will: (1) describe the flyer plate
experimental technique, (2) describe the
theoretical model for the dry soil flver plate
technique and. (3) present selected results of
dry soil flyer plate experinents.

DESCRIPTION - SOIL FLYER PLATE EAFENIMENTAL
TECHNIQUE

The experimental configuration for the dry
soil flyer plate technique is shown in Figure
1. The primary diagnostic instrumentaticn in
the experiment are time-of-arrival (TOA) pins
located immediately above the soil test bed
surface for determination of flyer plarte
impact velocity, TOA switches [~r ile
determination of shock velociry as a function
of depth in rhe soil, and soil strain cans for
the determination «f peak strain as a function
of depth in the soil tesi bed. The explosive
charge is initiated with a multipeint firing
system whevc the spacing between initiation
points is not greater than the charge
thickness. The quantitics of explesive needed
to produce the desired plate velocitinrs were
determined using Curnev vquatien (Ref 1,2)
predictions and the results of a series of
plate velecity calibration experiments using
small plates A polystvirene foam buffer is
placed between the explosives and the flver
plate to prevent spa!lation of the plate In
our experimental program, we have determined
that it {s important to obtain a gond seal
between the concrefe sujpurt ring and the
flyer plate to preveur blow-bv pases from
trigpering TOA switches prematurely An air
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shock, which is driven by the flyer plate, is
compressed to high pressure due to
reverberations between the plate and test bed
surface and a precursor is produced in the
soil. However, calculations by Southwest
Research Institute (SwRI) and our own studies
(Ref 3,4) indicate that the precursor is
significant only in the first few centimeters
of the soil, atter which, it is overtaken by
the main shock generated by the impact of the
flyer plate with the soil

One problem encountered was that followirg
each experiment, the plate would be found with
the outer portion bent upward. Bending
occurred because of the reduced loading from
the explosives around the outer portion of the
plate caused by edge rarefactions. This
situation was remedied by adding a guard ring
around the plate which prevented coupling of
shear and bending loads te the center plate.
This rechnique was successful in eliminating
the bending probhlem.

THEORETICAL MODE!ING - SOIL MATERTIAL

The nomenclature for development of the
theoretical model for a dry soil testhed is
described in Figure 2 whore conditions before
and after impact are defined. We treat onlv
the one-dimensional aspects of the
phenomenclogy in the theoretical development,
i.e., edge effects are igrnored. In the actual
experiment design, consideratior must he given
to two-dimensional flow effects induced by the
the assumptions
made in the one-dimensinnal modeling are still
appiicable Results of twa-dimensional
calculations pertormed hy SWRI (Ref 3)
indicate that in the central portion of the
suil test bed, out to approximately one-half
the plate radius, the flow field remains
essenrially one-dimensional, even te late
timez. This is due primarily to the confining
cffects of the native soil outside the test
bed. Thus, the primary design consideration
for derermining plate diameter is that it must
oe large enough so that all the
instrementation In the soll can ne
converiently placed inside a cirele that has a
radius of one-half that of the plate and is
centercd in the coil test hed.

e L T L S T P
&

The total writ area of rhe flyer
rlate is simply the ma's per unit area of the
plate, M Fimes its impact weloecity, V

Using conservation of somentum and assuming a
locking s2il medel (no strain recoverv), the
momentum per unit Lrea at some time afrer
plate impact can be cxpressed e

MOMmEeTLUm per

e is the soil preshocked density,

x is the shock position in rhe soil
relative to the impact surface. and

u is the soil particle velocity behind
=he shock
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Solving for u in Equation (1)

u - Ve

(2
Af +op X

Note that through Equation (2), u(x) can be
determined by knowing only the preshock soil
density and the plate impact velocity.

Through soil shock TOA data, t (x). or soil
strain data, €(x), or by knowiﬁg the soil
model in terms of shock velocity, ¢, versus
particle velocity, u, rhe remaining parameters
that characterize the stress and motion field
in the soil can be determined. Any two sets of
data will provide a solution, thus, for the
four data sets there are six independent
solutions

Solution 1 using Vf + ta(x} data sets
Solution 2 using U{ + e(x) data sets
Solution 3 using vf + c(u) data sets
Solution 4 using ta(x) + e(x) data sets
Solution 5 using ta\x) + c{u) data setrs

Solution 6 using ¢{x) + c(u) data sets

The remaining equations required to completely
describe the stress and motion field are

Is = p xu (3)

Ig - e lx xg)u {4)

g = g Ccu (5)
u

€= — (6)
c

0, - 25 @

8 Hf + psx

where

is a gage location,
Ig is impulse at the soil surface,
I~ is impulse at a gage location,
is soil stress at the shock front,
e is seil strain at the shock frent,
o_ is soil stress at the impact surface,

o_ is soil stress at a pape location.

The locking soil model is the key to the
simplicity of this technique. This model
assumes that the soil is compressed tov its
maximum strain state bv the shock wave and
that only an insignificant amount of strain is
recovered during and after unloading, A
result of the locking so0il model assumption is
that everv soil particle behind the shock
front, as well as the flyer plate, is moving
at the same velocity. The time at which a
stress and motion state exists at any point in
rhe test bed (s determined explicitly through
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the TOA data. or, if that is not avail.ble,
t_{x) generated through any two sets of the
other data (such as plate velocity and soil
strain data).

A review of strain versus depth data collected
in numerous dry soil flver plate experiments
suggested that the variation was linear. We
assume the linear relaticuship shown in
equation (9) where C'..J and Pl are constants.

€ = CO + Clx (9)

We now derive the funcriovnal form for t_(x)
based on Equation (9). Substituting for'u in
Equation (6) from Equation (2), equating with
Equation (%) and then solving for ¢, we obtain

MeVe
+ 2 X)(Cy + C1x) (10)

(Mg

or as expressed In reciprocal form

Podtys Me ¢ 200G + Ghx) g
c dx vaf

Integrating Eguation :11), we obtain

3 g
L = EQ ] ES [ CIHf * CU‘S ] %
?ﬂfUt

. 1
C 1
+ [ 1¥s } ¥+ eponstant

)

T T LJ\ [ sz' + H]x3 (12)
whetve

Bﬂ = 0} {arhitrary constant)

B, N

3

R B

L] e

HlV|

1

1ov ie simpiv a third degree
polvnamial shose coelficients can be
determined explicitly in terms of the
parametery indiceted or by use of a polvnomial

Equarinn

repression program applied to the TOA data

A omore detailod development ol the theoretical
model as well as a rull development of the
scaling reiationships are presented in

Reference 5

EXPERIMENTAL RESULYS DRY SO CEGLOGY
TESTRED

Eight 1.42-m. fvur & 44-m aned one 3 0%.-m
diameter flver pla‘e cxpeviments were
conducted during the developimont phase of this
program. The shjectives of these experiments
were to develop the flver plate launch
technique, develop diagnostic instrumentation
faur the measurement of plare impact welocity,

soil shock wave time-of-arvival and =oil peak
strain, to develop methods for placing the
soil in the test bed in 4 rontroilable,
repestable manner and te validate gages
Experiment FP 8-3 was the third 2. 44-m (8-fu)
diameter test and the first to be extensively
instrumented with a fuil compliment of
diagnostic instrumentation. In addition,
several types of stress and motion gages were
placed in rhe test bed for purposes of
evaluation and calibration MIPY data from
the FP 4-10 experiment were also selected to
show it's comparison with the model. Posttest
measurements of two MIPY records from FP 4-10
and the resuits of Selution 4 are plotted in
Figure 3 and show very good agreement. The
rest of the brief analvsis presented here
describes the results of the FP 8-3 experiment
and compares those results with the
theoretical model presented above. Diagnostic
instrumentation fielded in FP 8-3 is described
in Reference 6. Data nhtained with the
disgnostic instrumentation resulted in a good
determination of flver plate impact velocity
(474 m/s), shock front time-of-arrival wversus
depth and peak soil strain versus depth. The
nomiral soil densitv was 1833 kg/m™ and the
steel flyer plate was +.5)2 em thick.

Ground shock time-of-arrival versus depth data
are shown in Figure 4 with a third-degree
polvnomial fit ro the dara. The seil strain
versus depth data are <hown in Figure 5 with a
linear fit te the data. All dara shown in
Figures 4 and 5 are for page locarions within
a radius of 0 61 m from the centerline or tue
test hed.

Since tbhree indepundent sets ot data were
obtained (¥ . © ix). r(x), there are three

H “
independent solutions ilor determining rhe
stress and motion fields in the test bad. The
solution duta sets used will be referenced, as
before, in the [ollowing wav

Solution 1 using '-.'l #b_iN) data sets
a3

Solution 2 using YV, + cix) data sels

Solution & using, € (xY ¢ «(x) data sels
o

Solations 3., 5 and & jnvalve o{u! which was
not determined independently in this
experime:t

Figures 6, 7, 8 and 9 deccribe the srress and
motion field in the test bed for the three
solutions indicated. ! show the
atrenuation of peak veloe ity and
stress with depth in i, solutions 1
and 2 are ideptical (oy velocity versus depth
The higher welocity ipdivated by solution
should be treated with less contidenee than
solurions | and 2 which are determined
dircctly from the momentwun cquation In Figure
7 at “epths below approximately 0 10 i (soress
below AOO MPad,
obs=rved botween ail rthiee solutions., Seoil
particle velncity ver us time is shown in
Figure 8. The time history of particle
velociry at scme depth. for instance at a
velocity pape location, «an be determined by

c5oh darud

very pood Lpreiment s
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simply woting the arrival tiwe of the shock
front at that depth Again, below
approximately 0.10 m in deprth, the three
solutions are in very good agreement Nore
that since the scoil is ronsidered to he in
rigid body motion behind the shock, motion in
the test bed is completely described by Figure
8

Soil stress versus vLime | showi, in Figure 9
for a gage depth of 4 181 m which corresponds
to tiwe depth at which fiarpack stress gages
were placed. Noty that there is very lit'le
difference in the stress wavelorms for t.
three solutions if rhe time-ol-arrival shift
is accounted for

toans atad
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"Performance Evaluation of Piezoelectric Accelerometers Using a FFT Based Vibration
Transducer Calibration System"
Ernst Schonthal and Torben R. Licht

Verification (calibration) of the wuseful frequency range of a piezoelectric
accelerometer, are traditionally performed by the point-by-point method or by the swept
sine excitation method.

With the point-by-point method time restraints normally permit only a limited
number of points to be verified, whereby irregularities in the sensitivity versus frequency
are easily missed. With the swept sine excitation method limitations in penand sweep
speed may result in poor resolution and important information may be lost.
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PERFORMANCE EVALUATION OF PIEZOELECTRIC ACCELEROMETERS USING FFT BASED
VIBRATION TRANSDUCER CALIBRATION SYSTEM

Qs Ray Reed (Sandia National Laboratories): The part I missed in
your talk - you are applying the FFT - how were the accelerometers ex-

cited and to what G level; were they excited by impulse, or were they
excited by random excitation?

A: Ernst Schonthal: Random excitation and at abour 2 g's.
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DESCRIPTION - PREAMPLIFIER/DIGITIZER

The signal conditioning circuicrry of the
DCT-521209 provides the two telemetry
channel outputs; the step output, which
yields the whole G increments in steps of
N.156 V/C and the vernier channel, which
yields the magnified, fractional G levels
which vary from 0 to 5 V, depending on the
step level and accelerometer signal.

The operational sequence of the DCT signal
conditioning circuitry begins at the servo
accelerometer, described earlier. The
output of the accelerometer is fed through
a buffer/inverter with a gain of -1. The
huffer effectively isolates the condition-
ing circuitry from the servo section and
performs a voltage inversion necessary

for proper operation of the difference
amplifier. See Figure 2 for functional
hlock diagram.

The difference amplifier consists of a
summing node at the inverting input of a
low noise onperational amplifier. The
signals be summed are the inverted
servo output and the non inverted step
channel output. The difference voltage
generated at the input of the difference
amplificvr is magnified ov a factor of 16,
This amplified difference signal
represents the vernier output of the DCT.
The amplifier is biased such that if the
servo Input and the step output are
cxactlv equal, the ocutput of the amplifier
is: 2,500 %, When the servo voltage
increase¢s to a maximum +106 level above
step output, the difference voltage of
136V is amplified by 16 and added to the
2.500 bias, vielding a 5.000V full
scale output. Conversely, when the servo
voaltage increvases to a maximum -0
the step output, the differ-

Af 0,156 is amplified by 16
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the down line. When the count up line of
the logic section is made low by the
action of the window comparitor, a free

running astable multivibrator clock is
fed to the count up sectionm of a 5 bit,
full binary counter. The action of the
count Jdown linme is similar to that of the
up count line; when the O V comparitor
gves low, the clock pulses are routed to
the down count line of the counter.

The binary word of the counter is fed to
the input of the Digital to Analog
converter which generates a voltage
corresponding to the binary output word
of counter section. The output of the
DAC ran range from a high of 5 V to a low
of 0 V, in a series of 32 discrete levels
or steps or 0.156 V/step. This u0AC
output voltape represents step output
signal.

function of the window
counter and the DAC is to
the servo accelerometer output

The overall
comparitor,
quantize

into discrete 0.156 (lg) steps. The
quantized servo sccelerometer output is
fed back to the summing node of the

difference
loop.

amplifier, thus completing the

SUMMARY

Research Laboratories, Inc. has
devised and implemented a method of
reclaiming inherent transducer accuracy

in a telemetering system. Attached in

the appendix is a specification sheet
which defines the system as aprlied to a
linear acceleration transducer. This
particular device has been fully gualified

Columbics

for use in military missile svstems where
ruggedness, inherent reliabkilitv and
environmental! sta%tility are essential to
mission success.

The technigque can be readily applied to
anv transducer that has a zero to 5 Voit
output span.,
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AN INCREASED ACCURACY, DUAL CHANNEL TELEMETRY ACCELEROMETER

Qs Wes Paulson (NSWSES): I think you've answered my main question,
that is, you do have one accelerometer but two outputs?

A: Robert Hartzell: Right.

Q: Wes Paulson: Okay and that's to protect yourself. The noise
source that you're protecting yourself from isn't any non-linearity in
the accelerometer but it would be in the transmission channels?

A: Robert Hartzell: Right, 1it's the link itsell that's causing the
error or not allowing the inherent accuracy of the accelerometer in
the first place.

Q: Wes Paulscn: What's the approximate dynamic range of the link 1t-
self that's causing the error or not allowing the inherent accuracy of
the accelerometexr in the first place?

A: Robert Hartzell: The link that the Army was using was 250 counts
full range, 5¢ 1%t was like 138 millig's ¢f inherent accuracy and this
technigue takes you down to about eight millig's and 32 g's full
scale. And again that's not the limit of the accelerometer itself.
That was th=2 tes: data that they needed. The accelerometer we used 1in
the system has an inherent accuracy less than 3 millig's.

Q: Roger Noyes (EG&G) : When you mean accuracy, perhaps do you really
mean rescluticn?

A: Robert Hartzell: Well, resolution and accuracy basically 1is a
function of the suspension of the mechanism. Different manufacturers
use different mechanisms and that's what they market.

2: Roger Noyes (EG&G): I'm referring more tc gur~ tZrus ‘han your
particular un:t because 1t sounded to me like you were increasing your
resclution thereby increasing your accuracy based on the inherent ac-
~uracy of ycur device. But 1t really sounded tc me like you were only
increasing your resolution of the system?

A: Robert Hartzell: That's correct. You're not increasing the
resclutiorn of the accelerometer.

Q: Peter Stein (Stein Engineering): That system ought to be ap-
plicakle £ other transducers and accelerometers as a general prin-
c1ipal, do y<u have any plans?

A: Robert Hartzell: We offer the technigque, in the paper we say that
we haven't done 1t ye'. But it 1s as I mentioned. anything that would
have a zere ro five volt span will be appliicable. And Columbia, I'm

sure. wonwld pe willing to offer rthe ber faor a nominal fee.




A MICROWAYE TRANSDUCER FOR MEASURING PISTON AND PROJECTILE

YELOCITIES IN A TWO-STAGE LIGHT-GAS GUN

L. Nappert
Defence Research Establishment
Valcartier
Québec, Canada, GOA 1RO

ABSTRACT

A microwave transducer has been developed and in-
corporated to 4 Michelson type microwave inter-
ferometer system. The instrument enables the si-
mul taneous measurement of the velocity of the pis-
ton and projectile in the pump and launch tubes of
a two-stage light-gas gun (LGG). The transducer
is used to couple the microwave energy in and out
of the pump and launch tubes, without interfering
with the projectile motion. The development of
the microwave transducer, its working principies,
as well as its important electrical and mechanical
characteristics are discussed. The signal condi-
tioning performed and the data acquisition system
used with the transducer on the two-stage LGG of
the Defence Research Establishment Valcartier
(DREV) are described. Typical experimental sig-
nals recorded during firings of the LGG are shown.
The piston and projectile velocities calculated by
processing these signals are presented. Tt is
shown that these results correlate well with data
obtained from different transducers (pressure and
strain) mounted on the LGG.

INTRODUCTION

fhe Defence Research Establishment Valcartier
(DRFV) is equipped with a 250/105-mm two-stage
light-gas gun capchle of accelerating kilogram-
class projectiles to velocities excecding 5 km/s.
This facility is currently used for studying hy-
pervelocity impact and penetration phenomena under
controlled conditions. Recently, a detailed math-
ematical model describing the physical phenomena
associated with tne internal ballistic cycle of
two-stage light-gas guns was developed. To vali-
date this mathematical model and its related com-
puter program, an experimental program was under-
taken whose objective was to measure gun perform-
ance during firing.

The displacement and velocity of the piston and
projectile inside the pump and launch tubes of
two-stage light-gas guns are important data that
characterize their internal ballistic cycle. Mi-
crowave interferometry provides a useful method
for observing the motion of the piston and projec-
tile during their travel through the pump and
launch tubes respectively. One of the most impor-
tant components of a microwave interferometer sys-

tem for interior ballistic measurements is the mi-
crowave transducer used to couple the microwave
energy in and out of the pump and launch tubes.

First, this paper briefly explains the operation
of the DREV two-stage light-gas gun. Then the
experimental arrangement setup to obtain simulta-
neously the dynamics of the piston and projectile
is described. Afterwards the design of the micro-
wave transducer is explained in detail and its
electrical performances are presented. Finally
some experimental results are shown and the corre-
lation with other data obtained from different
sensors mounted on the gun is briefly discussed.

PRINCIPLE OF OPERATION OF THE LIGHT-GAS GUN

The DREV two-stage light-gas gun is schematically
illustrated in Figure 1. The pump tube is about
12 m long with an inner diameter of 256 mm. The
launch tube 1is roughly 21 m long with an inner
diameter of 110 mm. The principle of operation of
a two-stage light-gas gun is explained in detail
in the literature (1) and can be demonstrated by
describing a typical launch cycle.

The operation starts with the ignition and burning
in the combustion chamber of solid gun propellant
(first stage). The hot gases generated from this
combustion process drive the piston into the pump
tuha (second stage), which, in turn, compresses a
light gas, usually helium. A diaphragm is used to
isolate the projectile from the light gas. When
the light gas is compressed to a given pressure,
the diaphragm ruptures and the compressed gas ac-
celerates the projectile down the launch tube.
The piston is stopped in the area-change section
hetween the tubes. The high velocity is achieved
by the increased speed of sound in the light gas
at the higher temperature. The physical limits to
projectile velocity are set by the speed of sound
in the gas and dissipative losses in the flow.
The engineering limits are set by the stresses in
the oprojectile, in the combustion chamber and in
the area-change section.

The performance of the launch cycle is controlled
by varying the amount of gun propellant, the mass
of the piston, the initial pressure of the helium,
the diaphragm rupture pressure, and the mass of
the projectile.
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INTERIOR BALLISTIC MICROWAVE INTERFEROMETRY

The idea of using microwave interferometry to
measure the interior ballistics of light-gas guns
is not new. In the late 1950s, Pennelegion (2)
used a microwave technique to measure piston dis-
placement and velocity in a hypersonic gqun tunnel.
Since that time, several laboratories (3, 4) have
reported microwave measurements of projectile kin-
ematics inside the launch tube of light-gas guns.
At DREV, a microwave interferometer has been de-
ployed in its Terminal Ballistics Facility since
1982 (5).

Figure 2 illustrates schematically the experimen-
tal setup used at DREV to measure simultaneously
the kinematics of the piston and projectile during
their acceleration in the pump and iaunch tubes
respectively. In the arrangement shown, both
tubes must be viewed as waveguides of circular
cross section, and the piston and the projectile
as mcving boundaries inside the waveguides.

The operation of this interferometer can be summa-
rized as follows: The output power of the micro-
wave oscillator is split into two waves, one is
kept as reference and the other is used for meas-
urement. The later is sent to a microwave trans-
ducer which excites an electromagnetic wave in the
launch tube. This incident travelling wave propa-
gates down the launch tube where it is partially
reflected by the projectile which is designed to
be semi-transparent to microwaves. This semi-
transparency is necessary in order to observe the
rotion of the piston in the pump tube simulta-
ncously with that of the projectile. The trans-
mitted wave in the projectile propagates in *he
pump tube where it is almost totally reflected by
the piston which has its front face coated with a
thin aluminum foil.

It must be noted that the path length of tne two
reflected waves changes as the piston and the pro-
jectile move. Furthermore these two reflected
waves combine by addition to form a single wave
that is picked up by the microwave transducer and
mixed with the reference wave of the interfero-
neter. The reference wave is a fraction of the
original output of the microwave oscillator and
this wave always travels a fixed path length.

The output signal of the interferometer is given
by a phase comparator which detectes the instanta-
neous phase difference between the mixed waves.
From the theory of guided ciectromagnetic waves,
this output signal is ideally composed of the sum
of two sinusoidal functions. The argument o(t) of
each sinusoidal function is given by (6)

3it) = o oz(e) -0 (1]

'Y

where z(t) represents tie position of the piston
or the projectile as a function of time and "‘g is
the gquide wavelength 1in the pump tube or “the
launch tube. is the phase angle at the rest
position of the piston or the projectile. Equa-
tion [1] indicates that o(t) shifts by 2. each

"]
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time the piston or the projectile moves by half a
guide wavelength. This is due to the geometrical
arrangement of the measuring setup. The instanta-
neous frequency f(t) of each sinusoidal function
is obtained by differentiating [1] with respect to
time (7)

Flt) = oo Jpolt) = L;iil [2]

where Z(t) represents the velocity of the piston
or the projectile. This equation is the well-
known Doppler relation. 1Its shows that it is pos-
sible to calculate the velocity of the piston and
the projectile by extracting the instanteneous
frequency of each sinienidai function from the
interterometer output signal. This is done with a
signal processing technique that estimates the
spectral content of the interferometer signal.
This technique is explained later in this paper.

One of the critical aspects of the microwave in-
terferometer measurement technique is the design
of the microwave transducer used to couple the
energy in and out of the Tlaunch tube. The prob-
lems of exciting waves in waveguides and of ab-
sorbing their energy are usually not simple prob-
lems. Our approach for solving these ones will
now be described.

MICROWAVE TRANSDUCER DESIGN CRITERIA

The design of a microwave transducer involves the
sefection of a number of electrical parameters and
its intented use in a gun environment imposes cer-
tain conditions on its mechanical design. The
first two electrical parameters to select are

1) the propagation mode of the guided electro-
magnetic wave in the launch and pump tubes,
2) the frequency of the electromagnetic wave.
The TE , propayation mode is the dominant or fon-
damenta{ mode in waveguides of circular cross sec-
tion. That means that it has the lowest cutoff
frequency f. of all possible modes in a circular
waveguide, wﬁich gives the best spatial resolution
at a given frequency. Furthermore the attenuation
rate of the TE,, mode is generally lower than that
of other usable modes (principally the mode )
and its energy pattern is well distributed over
the wavequide cross section. For these reasons,
the TEll mode has been widely used in interior
ballistics microwave interferometry (8, 9).

As the frequency of the excited TE,, wave 1n the
launch ti .e increases, the spatial resolution of
the micruwave interferometer also increases which
is a desirable feature. However, as the frequency
increases, the launch tube becomes capable of pro-
pagating other modes than the desired TE,, mode.
The practical problems raised by multimode propa-
gation are higher losses and distortion of the
interferometer output signal produced by the dif-
ferent phase velocities of the several propagating
modes. In certain cases, this distortion may be




severe and could greatly complicated tne analycis
of the interferometer Output signal. In order to
guard against multimode propagatio | the freguency
f. of the electromagnetic wave is chosen iower
tgan the cutoff frequency f. of the TE,, mede
which is the second possible T% propagatisn mode.
In other words, the frequency f  1is chosen in the
following frequency band

1
=1
=y
[
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0.293 & f_o - 85 — 1&]
ro (uwe)? roofae )
L i
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Gun.

The transducss that aa” designed witn the above
criteria in inind will =ow he described.

MIZPOWAVE TREANSLUCER LISLHT2TION

Yarious  transdpcer Luntigurations were  devised
from which some trotetyues wece build and tested
in lahoraters or oan the jun.  dowever aigst of trem
wei e rejectes heciuse they did not meet one or
more of the required criteria. For example the
simpiess transiucer s ontained by emplaying a rod
at rijht 2ny's te tne T_ng’tudinal axis of the gun
tube and placed ia o just in front of the muzzle
apering. In this posiicorn the red coincides with
a ltine of zlectric field intensity for the tranr-
jerss electromegnetic wave and this type of wave
algne .ae be agxeited in tno tyhe,  ‘ha rod may be
fed from a coaxra’ line 2o “ts leng:ih adjusted to
obta‘n a masiuwn wnccgy  transfer into the qun
Tube.

Thic simzic - ransducer 3% tésted auring firings
of the light-gas qun ard as expected it does not
demonstrate rthe required mechanical characteris-
tizs. It was dectegyed at earch firing of the gun
by the shock sauc gracecding the projectile, pre-
venting the weasurement  of  the velecity of the
prajectite during the *ina zart of 1ts travel in
the Taunch tuhe. Furluermers the mechanical vi-
brations propanating in tne launch tube wall were
transmitted to the toiasducer.  These vibrations
introducel i Vitudr Yow frequency fluctua-
tions i~ the Teterforimetor uagput si2ndl, thereby
redicing the quaality of the urocessed data. For
these redsons 4 wre saybisticated transducer was

neauded,

[

re Ml orotair

is scnematically 1ilus-
i5 ¢asign, twe identical
wéjating the dominant
L c.cite the two uslacizations
of Bhe L. wave 11 inw Taunch tuhe. ‘he wide
t i odral -

4

-, v
Erdes Guvis A, H

frecLalig ar
- S o
! wivi A0 ysel U9

Aimen s iun Yar wavequide i

3

el tuo tne Yung: wdingl 1275 4! tno gen tobe and
the  twi v Juiaes ate perpe Zular
to e=ath o othor, Tall ospunt o coul” 1o Dolween rec-
tanpdtar ard round waveguides is possitle ana of-

ent Beccane L the commatipr ity uetweon the
sientric gne wagnstis Pielns o the junctien he-
twnrn the RS e PR B surwemgra, from g
aechanizal fo e, e e trical arrange-
Ment M Laeen e s oAb mdae sardies and the
Taunch tubi wea2nls o a.ttruntion te the projec-
Lile motion,
Commerctally avatianle tyue N cugeial-connector-
o wavegutd 3 A wntd to enoite the TLL.
WAyl in b vttt s nfi\l"";uf 1o in these a-

daplers, thie Lenter concuobor of tme coaxial line
catends nl. et vy %0 the yovide (R13. 4). In
orier to poutesl tae ceater cundultar Trom being
A troyad by e noch wave in front of the pro-
jestile ar by the hot jases behind 3%, tne rectan-
2.1 !__-‘ Vit ted wilh poiye-
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RECTANGULAR WAVEGUIDES

LALNCH TUBE

LUMN MUZZ: E

fIGURE 3 - Transition from two rectangular wave-
guides to launch tube
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FIGURE 4 - Schematic drawing of a coaxial-
connector-to-waveguide adapter
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FIGURE 5 - Voltaqe standing-wave ratio versus fre-
quency at a coaxial input port of the
transducer
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FIGURE 6 - Normalized power propagating inside the

Taunch tube versus frequency
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FIGURE 7 - Normalized power radiated outside the

Taunch tube versus frequency
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FIGURE 8 - Normalized power coupled between the
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thylene. This arrangement results in a simple,

rugged ana accurate method of supporting the cent-
er conductor. There is an additiona) benefit
gained by filling the rectangular waveguides with
polyethylene. The cutoff frequency fc of the TE .
wave in a rectangular waveguide iz qiven by (12}

£ e B 6]

“ 2a )

Al

fi g

in this ~quation ¢ is the speea of light, a is
the wide dimension or the wavejuide and Ty B oo ATE
respectively the re'ative permeability and rela-
tive diclectric constint of the medium filling the
waveguide. In or+der to have the same fc, equation
[6] shows that the ratio between the wide dimen-
sion of a ractangular waveguide filled with a die-
lectric met=2rial to the wide dimension of a wpua-
quide filled with air must be equal to 1/( .12y

= 1). In reducing tne required wide dimension o

the rectasngular waveguide by filling it with poly-
ethylene, the thickness of the transducer s also
reduced which neans a reduction of its weight

High order medes are set un in the rectangular
waveguides oy the coaxial line tu waveguide adapt-
er but all these modes are beyond cu*nff. The
lenght of the rectangular waveguides 1s choscn
such that 3117 these modes are attenuated suffi-
ciently 4% the junction betwcen the rectangular
waveguides and the Taunch tun2.  The lenght of the
rectangular wdvequides sets the diameter of the
transducer.

Conventional impadanie matihing tachnigues compat-
iblr with the intendes use of Lre transducer were
studiad to maavmize tre Lrans®ir oof energy from
the microwave oscillator into the Taunch tube.
Once coupled inte the liauach tube, it is desirable
that the encigy propagates in the TE,, mode toward
the pump *ibe inutead of being radiated outside
the launcn tube oy tne mzzle opening.  Further-
more,  the twy  reciaiquiar  waveguides are not
iteicly naependent foe ey will be some energy
soupling from one T3 tne othes Trie coupling fac-
tor JulWeien the wo leL,nl"’ mist bhe 23 Tow as

Ha5510 T

noorder g detlomine the Lest matihing arrange-
Meat A i, Lae fellowiag zlcctrical
pardmeter, 25 1 “unction of the ‘re-
quency.

- the Aieant gropdgasine mede sf tie microwave
anergy 14 tno Tagnck tube,

vl Lg% mingeaave tatio (VhaR) 4t the
cnd4izi iaput ports of the trancducer

- the puwer trovelliag dnsade 4he launch tube
com red to the power radiated] gutside, and

- the covpling tactor belwear the twy rectd4nqgu
Tar waveguides,

These paraie, Lor o owere deternioed Yegm Lhe measyre-
ment of the soattering coefifcionts & (13) at the

different input ports of the transducer with a six
port automatic network analyser (14).

Tne best results wer: obtained by giving to the
opening of the re.tanjul:r ~aveguides at the junc-
tion with th- jaunch tibe the contiguration of a
wide slot. The optimim dimensions cf the slot
were determined esperiimentally.  Furthermore, from
a mechanical point of view, this configuration
presents tnc advantage of redUC!ng the pressure of
the gas cn the rectarauiar waveguides.

[t was determined for ti¥s trarsducer configura-
ticn that the TE. medi 17 the only wode presents
in the launcn tube from 2.0 to 2.6 GHz. Fram 2.6
to 3.6 Ghz, the TE ., mode is still gresent but
most of the enerqy 15 propagated in the TE,, mode.
From 2.6 tc 4.0 %z, hianer orner modes are domi-
nant.

Figure & jives tog viltage standing-wave ratio
(VSWR) at one 9f tne cra.ial input port of the
transducer. A ¥Sa% of 1.7 (4.0 dd) is obtained in
the neighbourhood of 2.16 GH2 which is in the fre-
quercy opand for which gnly the TE . made exists in
the launch tuhc. A slightly bettér VSWR is reach-
ed at 1.7 5hz hut at this freauency there is more
than one modes prapegcating 1+ the launch tube.

Figures b and 7 cradle the compariison between the
power propigating inside the T3unch tuhe and the
power radiated outsice Ly the muzzle opening. At
2.1o GHz there 13 approximately 1.5 more power
oropigating in tne launch tube than radiated out-
sid2. At some other frequencies, the contrary is
obcerved particularly at 3.72 GHz which i3 the
frequency at wrich the Y3a% is minimum,
The last cerformance curve ' ne transducer is
shown 1n Figqure B. [t indicates a relatively low
oupling bet-eena the two ~ec gu'ar waveguides at
7.16 Mz, 't 2lsu thows that tnere exists a
strong coupling at sore other freguencies.

Figure 9 ,ues twz protographs ©f the microwave
transducer un whizh we can see the two coaxial
input ports end tie wile slut in the rectangular
wavequide opening.  Tne fransaacer 1S sorewed ontg
the wuzzic of the laun.d tabe a5 shown in Figure
100 "he most Favorable gperating frequency for
the transducer "o 2.6 Griz.

CATA ATOUISTI N AND wNULSNING

The nature af  the drterferemotor outyat signal
dictates the desiar id erfoomance requirements
of the datd agquisitice systen.  bor projectile
ve!orities upo ot LS w5 with Z.lb GHz microwave
excitatian, the ata are contiiaed inoan AC “gnal
whose frequoncy aoveas on frog zern to neariy 25
kHz in an fatecysl of gl than TU ome.

Figure i1 stiow, tne morowave tatorferometer sche-
maticdaliy tliustrated an Figure O, The output
signal of L dnterfer sacter after amplification
and analxg Taw-pass frltering is dicitized in real
time by 3 17-bit analog-to-di13ital  converter
(LeCroy model sZi/vi.  The samnling rate of the




FIGURE 9{a) - Front view aof *I: R Tyt P T -
! T 1L 1 € S0 i, MCOrimeve cransg- Fis vl flace-yc - 4
ey se-up view >f the microwave trans-

ducer mounted on the light-gas gun

FIGURE 9{b) ok

telwe ot spprimental microwave interferometer
for interior hallistic measurements




digitizer is chosen equal to 3 to 4 times the max-
imum oxpected Copnler freguency which is deter-
mined by the muzzle velocity of the projectile.
The digitized data are transferred to an HP 900U
series 320 computer for processing. Because of
the great importance and the high costs associated
to LGG firings, the amplified intcrferometer out-
put signal is also recuorded on a Racal Store-7D
analog tape recorder in the cdse of a digital
aquipment malfunction.

The data processing is based on migh resclution
spectral analysis of the t‘nt:.r.erumtc-r cutput
signal. In the method selected, called the welch

periodogram methog [15), the interferometer signal
is divided into overlapping segments of eaual
length and an estimate of the spectral content of
each segment is obtainvd by wplying ar FFT algo-

rithm {15). Tne velocity uof the niston and the
velugity of the projectile are extracted from the
peak peositions 14 =ach suectyr astim.tz: and are

caiculated #4ith i¢'. The oisplacement versus time
curve 13 abtaiped by integrating Lhe veiority ver-
sus time curve.

CYRFRIMENTAL REGHLT™

& zeries of firings of the OREV two-stige light-
gas aun sperating ia its ordaance {irw) velocity
range wor2 recentiy performed with the transducer

vounted un the launcn tube.  For edach firing, the
soojectile launched was a 1.%0 oo steel Cupe sup-
nortea Ly a sahor wads oF palycdrbuaate. The

P.9l-m-Tona ;:'s.t-\r. wis Made o7 tigh-density palye-
thyl-me with: lead inuests to alredin its ass o
o1 valua.  Its front face was Loated witi:
ehr.':‘r‘lusn foil in prder e 1ngrease ts mi-
crowave rafloctivity.
A typizal outout ignal from the microwave inter-
fergmetor |, reproduced in foger2 12, This signal
Ad5 Aillced o at g 10U-khz thing rete during
oni Fieine of tre light-gas gue. The micrawayi
inte-forvaeter Lignal clearly shows the inicial
mesenent fron the rest of the piston some 25 ms
af*m' tne firing wulse of the gun. The increasing

frequoncy indicates n2 accelration of the piston
down  che cump tube. In tuis iilustration, the
Moupy 2 L1ne Wave froe the projectile 5 only evi-
dent juring the firal zart f tno interferomoier
signal.  The Targe amplituda fluctuatiuns at the
end Af teic sYanal oare dee e the passage of the
arnjuctiieon g, eer? “hrgayh e opening of  the
microwave Trars s Thi small amnditude moduls-
tion uvhsery d or fro iaterforonstar signal is gen-
erated by the precccoc i the pump tabe of micrp-
wave propatating modo, gther tnan the ?E’P e,
These higner crder ok 'es are generated in the dis-
continuity cre«ted &y the tavsred section between
the launch tibe and “he  Jusy tube. Mechanical

vibrations wpn'oh propagate on the wall of the
Tamnch  tube are teapsmities So the microwave
treasduce-.  fhege yvibradionyg arve responsible for
the iaw-frepiency Fluctuations aaserved,

the signal dopioited if
described 1. the
abtained far Lig

1 gHre L4 owas avulessad as
Previous seclion, ihe resuits
vl ittty Cime histurins of

R |

the piston and the prijectile are shown in Figure
13 The piston shot start time was determined
from a cdaraful examination of ihe aralog data re-
cord of the iaterferometer 3ignal. The projectile
shot start time -umes from 2 first-order polyno-
mial fitted by the least squares method to the ve-
locity versus time data. Figure 13 illustrates

how the giston is rapidly accelerated by the hot
propellant jases., later decelerated oy the high-
pressuie lignt gas, and finally brought to rest

The
the yelaocity-time curve of the

befcra entering t?e arca-reducticon section.
discontinuities ia

projectile  rrespond o the arrival of shock
Wwaves, whicn propagate in the light gas, at the
sabet ~zav face.  This curve 3lso indicates that

tne projeciile asszanly eaf

its the jaunch tube with
4 velecity cf atout ;

2.2 owmis.

Jisplacemcnt-time nis*torisc of oot the piston and
the projectily assomtly are obtai n ed by integrai-
My rumerifally the u.ﬂ-\»w ding velocity-time
Curve. the resulis are shown in Tigure 14 along
wWith other portinent 1aformition gathered from
analys it or the wiaveforas produces dy different
sensor, acunted on tre qun.  The ¢rossdets on the
figure r2present the arrival tises of the shock
waves propagiatiag in the light jas at three pres-
Sure qauge mwedsuring positions on the uump tube
and at wws strain gady- measuring positions on the
iaunch tube.  The €irst dot at each strain gauge
nosition represerts the estismated arrival time of
the --r",evdle 3t these statians. We could see
that taere i5 2 goad -cerrelaticn between the data
obtai=eqd fruwm e analysis of the microwave inter-
forgmetzr boant the odata extracted from dif-

ferent aons.on mounten o the Jun.

Jdzxrall
yet

,.
LNE
has wui

SITUrcLy U7

the date presented so far
seen deterained precicely and depends,

among otnar things, on the acouracy with which tne
waveduide wivelerngtn in tve pump tube and in the
launch  wdbe " s krowi. £l tke Larameters de-
Lermintag 02 wiavequi vayaiength, only one nay
vary significantly ducing the int ~igr ballistic
cycie. 1t is the rﬂ\‘f:.mhvﬂ 1ndex of the medium
Timse 1 a'eiy in front of the piston and the srajec-
tile. te wivelengths used in the processing of
the data presested in this paper have been calcul-
ated with 2 pofractive 1ndex equal to 1.
CONCLYSIONS

Tnis paper has fosceib- § tng develogment of 3 mi-
crowave transducor aich is incurcorated ¢ oa mi-

srowave int. fer sed for interior ballistic

et

MEAS AT EREN The mic-owave transducer excites an
alectvorid jnotic wave 0 the Tauncth and pump tubes
At 3 Gight-gas sur «¥muoat intorfering with the

projectila metian,

The sxporimenial rosults progsented are cxanples of
the daty thart Haye pfoed antlinga with the micro-
wavi interie=letor and Ly associated transducer
at the iime L7 rirings of Lhe DREy light-gas jun.
The  performgnce of  tae transdioer Jduring  these
fi-inys dndicates ite antlity  to witnstand the
pregsaur2s and gocelerations charscteristic of an

Lion oLno4 oyn,

i 1y
riatatd
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[t is believed that by using the same design prin- (15) Ma-ple, S.L., "Digital 3Spectral Analysis
ciples than those presented in this paper, similar with Applications”, Prentice-Hall, New
microwave transducers could be developed for Jersey, 1987, p. 154.

light-gas guns with different bore diameters.
{16) Jain, V.K., Collins, MW.L., Davis, D.C.,
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A MICROWAVE TRANSDUCER FOR MEASURING PISTON ANC PROJECTILE
VELOCITIES IN A TWO-STAGE LIGHT-GAS GUN

Q: Steve Nickless (Honeywell Solid State Electronics): What's the
material of the launch tube and does it have an effect on the perfor-
mance of the transducer?

A: Lucien Nappert: As for the launch tube, what kind of steel I
don't know. The transducer is aluminum. Up to now we fire the gun
with this transducer mounted on it only in its slow velocity range.
The maximum velocity e have obtained is 8,000 feet per second. We
have not yet fired the gun at 15,000 feet per second with this
transducer on it. We will have to do some measurement before that be-
cause we don't know how the transducer will affect the function of the
gun at this very high velocity.

Q: Jim Faller (Aberdeen Proving Grounds): Sometime ago I had some, I
would say, minimum exXposure to the gas-gun. There was some infrared
technigque that was being used. Are there other competitive technig.
that can be applied to the measurement of the velocity once the
projectile exits? I just wondered with what are you competing with
out there in terms of making this kind of measurement?

A: Lucien Nappert: These measurecmontes werce made Lo validate ccmputer
code, that was the problem. You could use other techniques to take
measurements for internal ballistic measurement like laser inter-
ferometry or something like that. But with laser interferometry you
will have very high resolution at the start of the projectile but the
doppler effect frequency is increasing so rapidly that you will have
some problem to recall the data and also with this technique I think
it's the first time we've measured the velocity of the piston and the
projectile simultaneously. That could not be done with other types of
measurements, like laser interferometry or something like that.

Q: Jim Faller: You call attention to the light gas-gun. Is there
such a thing as a heavy gas-gun that this technigue would not be
adapted to?

A: Luciern Nappert: We've used this technique to measure the internal
velocity of an ordinary gun; but we didn't do it with this transducer,
we used a much lighter transducer.

Q: Bill Cardwell (GE, Cincinnati, Ohio): Have the projectiles that
you are using on this been metallic or have you done any investigating
#ith nonmetallic projectiles?

A: Lucien Nappert: The projectile in this case was a one inch steel
cube supported by a sabot made of polycarbonate and the diameter of
the sabot was 110mm and the steel cube 1is glued in the front of the
polycarbonate sabot. The polycarbonate is semitransparent to the
microwaves. Some part of the energy is transmitted to the polycar-
bonate and some is reflected back.

Q: Bill Cardwell: Your system has to have some sort of metallic ob-
ject to reflect the .....
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A: Lucien Nappert: Not necessarily, only the polycarbonate sabot
will be okay. If you have some metallic obje~t, you will increase
your reflectivity but you must make a compromise between the trans-
mitted energy and the reflected if you want to see the projectile and
the piston simultaneously.

Q: Bill Cardwell: Then the amount of refiected energy you have would
effect the accuracy of your measurement, is that correct?

A: Lucien Nappert: Yes, I think that in this case we have a better
accuracy on the piston velocity than on the projectile velocity be-
cause there is much more reflected power of the piston. We put on the
piston front face a thin aluminum foil to increase its reflectivity.

O John Kalnowski (ECG&G): In equation of state work we have a
material which we inpact with the piston, as you call it, so we can
study the effect of the material under high pressures. I would im-

agine we would like to know what the input velocities were, and so,
I'm wondering if we put a target just aft of your microwave system if
tnat target would affect your reading and if it would be valid or in-
valid?

A: Lucien Nappert: Yes, we have a target in front of the gun, maybe
ten feet from the muzzle of the gun so the target has no effect on the
rneasurement technique. But if you put your target very close to the
muzzle of the gun, you will have some effect because of the radiated
power outside of the gun and in fact we followed the prcicoetile for a
few feet outside the barrel. Because the radiated power outside of
the gun is taken back by the transducer.
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BUILT-IN MECHANICAL FILTER IN
A SHOCK ACCELEROMETER

Anthony Chu
Project Engineer
Endevco
Rancho Viejo Rd
San Juan Capistrano, CA 92675

ABSTRACT

Isolating the sensing element of a transducer from
high frequency transient attacks appears to be one
of the most effective design improvements in shock
accelerometers. An experimental transducer de-
sign with integral mechanical filter has allowed
the experimenter to record close-range shock exci-
tation without zeroshift, a common linearity error
in pyvroshock measurement. This piezoelectric ac-
celerometer prototype features both an input me-
chanical filter and an electronic low-pass filter in
order to maximize usable bandwidth. Calibration
data indicate flat frequency response to 10kHz with
24 dB per octave roll-off thereafter. Field test re-
sults are also shown in this paper.

INTRODUCTION

With all the advances in digital data acquisition
equipment and signal processing techniques, the
acceleration transducer (accelerometer) is still the
weakest link in a pyroshock measurement chain.

Current design approaches in accelerometers, such
as electronic filtering and nigh resonance, can not
always gvaranty the experimenters with repeata-
ble performance and believable results.

The core of the problem has been identified to be the
sensing element of the transducer. All sensing
mechanisms are vulnerable to high-g excitation at
frequencies far above our point of interest. These
high frequency, high-g transients, although "in-
visible" to many recording systems, are present in
all close-range pyrotechnic events and metal-to-
metal impace testings which are common in many
qualification requirements.

The advantage of using a mechanical filter as an
isolator is discussed. Isolating the sensing ele-
ment (piezoelectric or piezoresistive) from high
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frequency transient attacks appears to be one of the
most effective design improvements in shock ac-
celerometer. A shock transducer design with an
integral mechanical filter has allowed the exper-
imenter to record pyroshock time history without
zeroshift, a common linearity error of the sensor
in pyroshock measurement. This piezoelectric ac-
celerometer prototype features both an input me-
chanical filter and an electronic low-pass filter in
order to maximize usable bandwidth. Calibration
data indicate flat frequency response to 10kHz with
24 dB per octave roll-off thereafter. A comparison
of this unique design with commercially available
mechanica) filters is also presented. The surviva-
bility of transducers in high-g environments has
greatly increased due to shock isolation provided
by these (ilters.

PROBLEM IDENTIFICATION

All spring-mass type accelerometers have a finite
seismic resonance. To obtain linear response
from such a transducer, one must be certain that
the input spectrum always stays within its recom-
mended bandwidtr  As a genera! rule-of-thumb,
the maximum m .su-<d frequency for an un-
damped acceleromer. .0 be less than one fifth of
thn transducer resonance. This rule is generally
well observed in the vibration-test community.

Unfortunately, the term maximum measured fre-
quency are often misinterpreted as the upper band
of the Shock Responze Spectrum in shock measure-
ment. Since most Shock Response Spectra stop at
10kHz or 20 kHz, accelerometers with resonance
in the neighborhood of 100 kii. are usually consid-
ered adequate for these applications. It is however
ympostaint te remember that the input spectrum of
most high-g shock measurements contains fre-
quency components way above 100 kHz, well be-




yond the capability of our modern recording devic-
es. These high frequency components are often
unnoticeable until something occurs during data
acquisition; eg. aliasing of a digital recorder.
The most commonly used wide-band analogue taje
recorder can only capture time history up to 80 kHz
(running at 120 ips), out-of band information is
therefore naturally attenuated and "invisible” on
playback.

The problem is further confused by the issue of the
damage potential of high frequency. It is known
that shock inputs above 10 kHz seldom cause any
damage to the test article, and they are routinely
ignored in most data analvsis. These high fre-
quency components, azlthough posing no danger to
the article, seriously affect the linear operation of
any spring-mass type acceleromctor.

Recently, a few papers and articles have been pub-
lished [1][2] concerning the etfect of ultra-high fre-
quency impulses on shock measurements. This
out-of -band transient phenomenon is referred to
in the papers as "Pre-Pulse”. There are two tvpes
of shock simulations capable of generating near
true-impulses:

a) Close-Range Pyrotechnic Shock

The process of explosion involves chemical reac-
tions in a substance which convert the explosive
material into its gaseous ~tate at very nigh temper-
ature and pressure. Most explosives, such as Flex-
ible Linear Shaped Charge and pyrotechnic bolts,
1o not contain as much energy as ordinary fuel,
but gencrate extremely high rate of energy release
during explosion. Tne response of the structure
near the immediate region can actually approach a
true impulse due to the instantaneous velocity
change at the explusive interface. As a result,
measuring at the area surrounding a pyrotechnic
explosion has always been a mghtmare for engi-
neers and scientists,

Depending on the explosive location and the point
of measurement, the amourt of high frequency en-
ergry reaching the transducer is inversely propor-
tion to the distance between them. In a remote
sensing location where the shock wave has to prop-
agate through a long path or many joints of dis-
similar materials to reach the transducer, high
frequency components cin be sigmificantly attenu-
ated.
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b) Close-Range Metal-to-Metal Impact

Most pyroshock simulation devices, such as drop
towers and pneumatic hammers, rely on high ve-
locity metul-to-metal impact to generate the re-
quired shock spectrum. When the point of contact
allows very little material deformation (like in all
reusable machines), the acceleration response of
the structure can also approach a true impulse.

Again, the response spectrum is highly dependent
upon the accelerometer location relative to the puint
of impact.

EFFECTS OF NEAR TRUE-IMPITLSES ON AC-
CELEROMETER

There are two types of commonly use shock accele-
rometers, piezoresistive and piezoelectric devices.
Each reacts different!y under the attack of near
true-impulses. Three common failure modes are
observed:

a) Sensor Fatlure

Recent ncw designs in piezoresistive accelerome-
ter have tremendously improved their usable band-
width and rigidity. One type of cemmercially
available PR sensor exhibits seismic resonance
above 1 MHz (3], leaving quite a margin of safety
for the general rule-of-thumb. Under the attack of
delta function liked impulses, however, the sensor
can still be set into resonance (at 1 MHz) due to the
nature of the input signals. Since the gage mecha-
nism is practically undamped, displacement of the
elements goes out of control at resonance and even-
tually cause gage hreakdown. The result of this
type of failure is complete loss of data.

Piezoelectric sensors are more robust under the
same condition. But they fail in other fashions:

h) Zeroshift

This subject has been well examined in many
technical papers |4] [5] [6]. A piezoresistive accele-
rometer generally does not exhibit zeroshift nuntil
the gage mechanism has been damaged or is in the
process of deterioration. Piezoelectric sensors, on
the other huand, account for most of the zeroshift phe-
nomena associated with transducers.




When a piezoelectric element is set into resonance,
two things can happen:

1. Relative displacement of the seismic mass can
exceed 100 times of the input. The crystal material
is overstressed and produces spurious charge out-
puts due to domain switching. The result of this
type of failure is DC offset in the time history.

2. The crystal material 1s not overstressed but a
huge amount of charge output is generated which
saturates or damages the subsequent electronics.
The resuit of this type of malfunction is loss of data
or gross DC offset in the time history.

Slight amount of zeroshift in the time history can
yield unrealistic velocity and displacement dur-
ing data reduction. The real danger remains that,
although data with gross DC offscis are generally
discarded, the minor one are accepted as good
measurements.

¢) Non-Linearity

The output of a transducer at resonance is some-
time non-linear and not repeatable. The response
of a saturated charge converter is also non-linear
and not repeatable The result of this type of mal-
function 1s poor repeatability in SRS, leading to in-
correct definition of the shock environment.

SOLUTION TO THE PROBLEM
CAL FILTER

-- MECHANI-

Mechanical Filter

An obvious solution to the accelerometer resonance
problem is to isolate the sensor from the high fre-
quency signals. When an appropriate material is
placed between the structural mounting surface
and the transducer, a mechanical low-pass filter is
formed. The filter slope of such an arrangement
approaches 12 dB per octave. In order to make the
filter effective, the -3 dB corner must be set at a fre-
quency far below the accelerometer resonance to
insure adequate attenuation.

There are three critical design parcmeters in a
mechanical filter:
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a) First, the filter/accelerometer combination must
be robust enough to withstand high level shocks.

Many “isolators” rely solely on the strength of
spring/damping material to keep the accelerome-
ter in place.

b) Secondly, the Q (amplification) of the mechani-
cal filter must be very low. Otherwise the linearity
of the passband data will suffer. Damping charac-
teristic is a c.itical consideration ir matching the
accelerometer to the mechanical filter.

¢) Thirdly, the relative displacement between the
transducer and the mounting surface must not ex-
ceed the linear range of the spring/damping mate-
rial. When the accele.ometer "bottoms out”, its
high frequency isolation characteristic of the filter
is lost, and the protecuion to the sensor fades.

Existing Desi

Although there many shock isolators on the market
for machine vibration isolation, they are not de-
signed with linearity in mind, and their applica-
tions are quite different. A few foreign and lecal
private institutions have built some experimental
devices for their own shock measurements, but
none are commercially available. These proto-
types were made out of exotic materials, such as
rosewood and cloth, for their unique damping and
stiffness properties; reliability and repeatability of
these external filters are questionable. One of the
accelerometer manufacturers does offer an exter-
nal mechonical filter especially tuned for its own
brand of transducers, but it is really intended for a
general vibration environment.

One common problem facing external mechanical
filters is the resonance of the filter itself. Even
with careful selection of spring and damping ma-
terials, critical damping is rarely achieved. Any
small amount of amplification factor (Q) in an
imperfectly damped filter will produce substantial
degree of amplitude distortion from a shock input.
This distortion manifests itself as ringing (at the
filter's corner frequency) superimposed on the ac-
celerometer output signals.

Another problem has to ds with accelercmeter
matching. The corner frequency and the Q of a ex-
ternal filter is highly sensitive to the mass of the
attached transducer. Minor deviation on size and
weight can result in significantly difcrent re-
sponse.
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Given the physics of the problem discussed above,
it seems obvious that if ane can design a shock ac-
celerometer to incorporate a tuned internal me-
chanical filter for sensor isolation, and match it
with a built-in electronic low-pass filter to remove
unwanted residua!l ringing of the mechanical fil-
ter, many transducer problems in pyroshock
measurement can be avoided. A block diagram
in Figure 1 depicts this concept.

Built-in Mechanical Filter

An experimental accelerometer with both me-
chanical and electronic filters was successfully
built in our Engineering Lab.

Based on a well estabhished piczoelectrie shock
sensor, this accelerometer featured a captive me-
chanical filter arrangement.  Compared to the

Figure 2a

K3

1
Electretae Filier Impedance !
12dRawtave Converter I ’

: Passband

model of an external filter (Figure 2a), this unusu-
al scheme provided the transducer/filter system
with added rigidity. tsce Figure 2b) The transduc-
er's external housing, which served as an enclo-
sure for the sensor and the isolation material, kept
the "guts” together in case ¢f excessive shock input.

The hght-weight sensor assembly housed the piez-
oelectric element and the hybrid microelectronics.
The internal electronic filter, a two-pole Butter-
worth low-pacs, provided another 12 dB per octave
roll-off after the mechanical fiter The spring/
damping material was meticulously chosen and
matched to react with the mass of the sensor in a
synergistic fashion. This combination yielded a
mechanical filter with a damping coefficient of .20
to .15, and a resonant {requency of 15 kHz.

To attenuate the ~5 dB3 rise at 15 kHz, the corner of
the 2-pole low-pass filter was purposely set at 10 kHz

o e

Figure 2b

MECHANICAL FILTER MODELS
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in order to compensate {or this uuwanted peak. The
end result is shown in Figure 3 where the solid line
represents the combined frequency response of the
accelerometer; the single dotted line represents the
mechanical filter respunse, and the double dotted
line denotes the electronic filter response. This
combination offered a 24 dB per octave roll-off be-
yond 10 khz which effectively isolated the piezoe-
lectric element and subsequent electronics from
any high frequency transient. Built-in electronics
also allowed impedance conversion taking place
inside the transducer. a desirable feature for signal
transmission.

Accelerometer Performance

A frequency response calibration is shown in Fig-
ure 4. The accelerometer has an effective linear
amplitude response from 1 Hz to 10 kHz within =1
dB. Sensitivity of the unit is .11mV/g which
equates to a full scale dynamic range of >50,000g.
Cross-axis sensitivity up to 50,000 g is less than 5%,
and the resonance of the crystal element itself is
larger than 130 kHz. The accelerometer weights
3.8 grams and operates from a constant current
source.

One of the major concerns regarding the perfor-
mance of the transducer has beer. temperature re-
soonse. Since the material used for damping was
basically a polymer, frequency characteristics
varied with temperature. An experiment was con-
ducted to investigate the effect of temperature using
transient inputs from a Hopkinson bar. The input
transient was defined to be about 100,000 g peak, and
the corresponding pulse width was ~70 uS. Repeata-
bility of the pulse shape was quite acceptable, but the
shock level had a standard deviation of 5,500 g.

Figure 5 compares the transient responses of the ac-
celerometer at 75" F and 45°F. The peak response at
75°F is measured to be 56,000 g, and 78,100 g at 45°F
(these are median data selected from samples at ap-
proximately the same level) The peak level is con-
siderably less than 100,000 g due to filter attenua-
tion. Taking the variability of input level into
account, the indicated peak g at 45°F 15 9.2% lower
than at room temperature.

Figure 6 shows the transient responses at 75°F and
120°F. Here the indicated peak g at 120°F is 83,000
g, and 79,000 g at 75 °F, a +5.0% increase in ampli-
tude response.
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Pushing the physical limit of the damping materi-
al, the same test was conducted at 150°F. Figure 7
shows the transient responses at 75°F and 150°F.
At 150°F, the peak response indicates 100,700 g
while the 75°F shows 84,000 g, a +19.9% increase in
apparent response.

Our data seems to indicate that, within +30°F from
ambient temperature (75°F), the mechanical filter
displays a small amount of variation. Above
120°F, however, some correction factor may be ne-
cessary.

Dasias Limitats

Apart from the temperature constraint mentioned
in the preceding section, the accelerometer has an-
other physical limitation. Referring to Figure 2b.
The mass M, in our design, is the sensor of the ac-
celerometer, and the mounting surface becomes
the boundary of this second order system. The con-
fined springs/dampers are represented in this
model by K1, K2, C1 and C2; the stiffness of the out-
er case is represented by K3. As long as the trans-
mitted force F to the sensor does not cause exces-
sive travel in K1 and K2, the system will behave in
a predictable manner. The practical displacement
limit of the existing system is estimated to be >
0.01".

The equation which relates dynamic range of the
mechanica! filter to the maximum linear travel of
the spring material is:

lad

1

R EORT

=

where

t = maximum travel of spring
¥ = maximum input acceleration
{ = damping factor

w = input frequency
oy, = resonant frequency of mechanical filter

A maximum input shock spectrum derived from
this equation (based on 0.01" spring travel) is
shown in Figure 8. The weakest spot is under-
standably at 15 kHz where the filter resonates.
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The maximum allowable level at that frequency
is 67,000 g. Above 67,000 g, the mechanical filter
loses its effectiveness (eg. bottoms out), and protec-
tion to the sensor ceases.

TEST RESULTS

Several prototypes were sent out for field evalua-
tion. The first group were tested at the U.S. Army
Combat Systems Test Activity, Aberdeen Proving
Ground, Maryland. The evaluation set-up was a
classical cluose-range shock measurement (7]
which involved a 18" x 18" x 1.5" steel plate. All
the test transducers were hard mounted on one
side (in the middle), while the impacts occurred
directly on the other side of the plate. Types of ex-
citation used for shock generation ranged from
ball bearing impacts, blasting caps, to C-4 detona-
tion.

Figure 9 shows a comparison between the shock re-
sponses of a 200,000 g piezoresistive type accele-
rometer and the prototype with built-in mechani-
cal filter. A 2" ball bearing was used to strike the
plate and produced the input acceleration. The
dotted line shows the response of the prototype at
about 1,100 g peak, whereas the PR accelerometer
shows almost double the peak g level due to its wid-
er bandwidth (1 MHz). Figure 10 shows the same
event except that the PR transducer output has been
filtered at 10 kHz. Note the closed agreement be-
tween the two accelerometers. (the phase shift
could be due to different filter characteristics)

Figure 11 shows the response of a typical shock ac-
celerometer measuring the excitation from a
DFP-2 non-electric type blasting cap (.05 gram).
A classical zeroshift occurred 2 milliseconds after
the blast-off. Figure 12 shows the response of the
prototyne under the same excitation condition; no
DC offset was noted.

Figures 13 and 14 show the differences in ampli-
tude response of a typical shock accelerometer and
the prototype with mechanical filter. Input excita-
tion was the detonation of a M7 blasting cap (.9
gram) directly behind the sensors. Again the
transducer without mechanical filter exhibited a
huge amount of DC offset.

Figure 15 shows the killer -- 1 oz, of C-4 detonated
on th.e plate. The experimenter reckoned that the
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input transient could well be in excess of 1 million
g. Here the prototype survived the blast, but the DC
level has shifted; apparently the mechanical filter
bottomed out. In similar tests, other piezoresistive
accelerometers had been destroved due to the high
frequency energy content,

Another field test was conducted at MeDonnell
Douglas, St. Louis, Missouri where three prototypcs
were mounted on a test article with 28 feet of 18
grain/ft PETN mild detonating cord. This test ex-
hibited tremendous amount of high frequency ener-
gy in certain directions. Figure 16 shows the re-
sponse of one of the prototypes in a mild cirection.
The Shock Response Spectrum and the velocity were
said to be believable.

Figure 17 shows the response in the vicious direc-
tion. Although the time history seems normal, inte-
gration indictes unrealistic velocity. Note also the
rising low end of the SRS due to latent zeroshift. To
analyze the data further, the Fourier Spectrum was
calculated and is shown in Figure 18. Here an obwvi-
ous spike dominates the FFT plot at 15 kHz, indicat-
ing that the filter is resonating.

FUTURE DEVELOPMENT

There are still many problems to overcome in mak-
ing a perfect shock accelerometer. Within its limi-
tation, however, this experimental transducer is one
step closer to the reality. A patent recently has been
applied for this shock transducer design concept |,
and production units may be available in the near
future.

Future develepment of this experimental accelerom-
eter may include 1efinement of the mechanical fil
ter for better linearity and higher dynamic range.
Different types of sensing elements will be investi-
gated in search of wider frequency response and re-
duction of sensor non-linearity. Improvement in
temperature response of the mechanical filter can
also he expected.
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BUILT-IN MECHANICAL FILTER IN A SHOCK ACCELEROMETER

Q: Jim Faller (Aberdeen Proving Grounds): I'm familiar a little bit
with the individual who did this test and Endevco now manufactures
both piezoresistive and piezoelectric accelerometers, am I right? So
do you now consider this an 1mprovement over your existing line of
products?

A: Anthony Chu: For pyro-shock close range metal to metal impact,
yes.

Q: Jim Faller: That comparison test was between another Endevco
gauge?

A: Anthony Chu: Yes, that was the 7278. That's correct.

Q: Jim Faller: Now what emerges from that test? Was one gauge to be
believed more than the other, because even though you didn't call at-
tention to that differential and amplitude; it was, I would imagine,
from one stand point substantial. Is there any way of determining
which gauge gives the better measurement?

A: Anthony Chu: At that g level, I don't think there's a significant
difference, but that was just a ball bearing dropped onto a plate and
he had some more vicious tests that the 7278 simply didn't survive be-
cause fthe cantilever would break. You excite resonance of the one
megahertz sensor that resonates and it breaks, so its a matter of sur-
vivability.

Q: Jim Faller: You're alsc saying this is 67,000 g's versus one mil-
lion g's for the other one? The other one is capable of going a mil-
lion or more?

A: Anthony Chu: No, I didn't say that.

Q: Jim Faller: I thought they they were measuring a million or more?

A: Anthony Chu: No, the test that he shifted the one with the
mechanical filter was at about one million g's.

©: Jim Faller: Is this now an available new product?

4: Anthony Chu: Yes, this is an available new product.

Q: Jim Faller: What i= the option a person will have? What is going
te be recommended? In other words, your standard 1line or is this new

product 1s golng to be considered superior?

A: Anthony Chu: If you are measuring really c se to the source,
that's the only way that I can see it, at this point.
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"A Pressure Transducer to Measure Blast-Induced Porewater Pressure in Water Saturated
Soil"
Dr. Wayne A. Charlie

This paper describes our use of a modified commercial pressure transducer
(ENDEVCO Model 851 1A-5K-\M1) to experimentally measure the transient water pressure
in water saturated cohesioniess soils. A series of controlled laboratory and field tests
were conducted which subjected water and water-saturated soils to a high amplitude
stress waves induced by impact and explosives. The results of our study and the response
and calibration of the porewater pressure transducer will be presented and discussed. The
results of our research indicate that the transducer can measure the porewater pressure in
water saturated gravels, sands and silty sand.
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A PRESSURE TRANSDUCER TO MEASURE BLAST-INDUCED POREWATER PRESSURE IN
WATER SATURATED SOIL

Q: Bill Cardwell (GE Electronics, Evandale): You mentioned you had
capability of cold and hot water 1in the tank. Was there a reason that
you wanted to go up to higher temperature and what temperature did you
reach?

A: Wayne Charlie: The reason We went to warm temperatures 1is that
it's very difficult to saturate soil. We ran de-aired water through
for two weeks and we couldn't saturate the sample. We have something
like 50 tons of soil we're trying to saturate so we ended up having to
go to hot water. We used the hot water to de-air the soil. We ran
warm water up and as it was coming through it would be cooling down.
We actually ran the test at the normal air temperature, we let it cool
down first. But it was just to get the air out of the soil so that
we're actually rvunning truly saturated tests.

Q: Ron Tussing (Naval Surface Weapons Center): I talked to John
Ainsworth from Endevco and they make a special gauge for Germany, al-
though it may be made in England, I don't recall which it is, but it's

made for underwater use. What you have works fine, but the Germans 1in
the Baltic found that the oil did wash out of the gauge so they had
to go tc this special Endevco. So there 1s a gauge although I'l1l have
to look it up when I get home. Did you consider using something like

an underwater pressure gauge since you're essentially underwater
there, something like a tourmaline gauge from PCB or something like
that?

A: Wayne Charliie: No, we did take the plate off and on and tried it
under water. We did correlate those back tc Kohl's underwater ex-
plosive shots at the same pressure. His correlates with distance and
charge size within probably 10% of that data. We have not used
another gauge on this shot, so there's some potential. On the ac-
celeration data that we have, when we integrate that particle velocity
for the peak particle velocity and convert it to what we're seeing on
the pore pressure, the shape 1s the same on the early part of the
curve and the stress that you would calculate from the acceleration or
the particle velocity integrated from the acceleration is also within
10% of what we're seeing on the peak shots, although cn ou: later
shots we losgt our acceleration. The lab <alibration loaoking at the
projectile velocity etc., all ran within 10% of what we expected from
the transducer. and it wasn't just on one side, i1t was on both sides.
We alsc mrasured independently at ancother site. particle wvelocity, but
we were further away and that also correlated with the pore pressure.
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DIFFICULTIES/REMEDIES IN PRESSURE MEASUREMENTS
WITH PIBZORESISTIVE SENSORS

8. Nickless and R. Maglic
Honeywell Solid State Flectronics
Colorado Springs Colorado BOS06

ABSTRACT

Resistors implanted into single crystal of thin
Silicon diaphragms have their resistance stress
sensitive. When measured fluid pressure causes
this stress, the resistance measurement allows
an accurate assessment of pressure ip question.
Although this sounds simple, the resistance
change R depends on factors other than just
stress: temperature, direction of the re<’stor
in the crystal, impurities on the su:iace and
definitely the quality of P-N i.action bordering
the piezoresistor; im thic paper we show how the
senscr current leakags [}, results from defects
in the P-N junc+iun. Some of these defects are
crystalogra; ic and some are impurity related.

We describe here first a pressurc-sensing IC-
structure and how the leakage current is
observed. Next, we describe how stacking faults
are introduced in the "Front End" of the IC
wafer processing (example a); other types of
defects are introduced during subsequent
die/sensor processing (examples b).

Example a. Stacking Fault introduced into P-N
juaction area during Front End processing
provides a leakage path for current I. The
Jeakage path is completed however, only if
subsequently deposited "N-Cap" layer is very
conductive. Computer simulation of resistor/N-
Cap implant predicted formation of peculiar P-
type islands influencing the leakage.

As examples of type b we discuss the effect of
high-pressure water scrub on the current leakage
of a piezoresistor: this popular processing step
(clean) can introduce defects in the same
sensitive area nf tie piezoresistor mentioned
above. Great yield improvement results when it
is eliminated/controlled.

Finally, the origin of defects induced by the
scrubbing is examined

INTRODUCTION

Blectron/hole conductivity in single crystal

silicon depends on energy barriers a carrisr
"sees’ for particuiar direction of propagation;
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electron/hole energy bands are stress sensitive
in silicon leading to well known ex;irical
expression for change in resistance

AR = x(6).R.o
wheie 0, psi is stress at the resistor site and
8 angle of propagation -in respect to say
[100]-direction. w(8) is piezoresistive co-
efficient and ¥.0 is of the order of 1% for S5i.
It fluid pressure is to be measured P, psi, a
silicon diaphragm is etched out of a solid wafer
of single crystal silicon and a resistor is
implanted into it; usually a P-type wafer (Boron
diffused intc silicon) is used and an N-type
epitaxial layer (N-Epi) is deposited on it. The
N-Epi serves as an etch stop when manufacturing
the diaphragm - it defines diaphragm thickness.
Figure 1 shows a pressure sensor die after an N-
Epi was grown on the P-type wafer. B8ilg is the
passivation layer; the diaphragm is formed by
stching away P-type silicon.
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After a resistor implant (light implant, P°) a
heavy P-implant insures connection between
resistors and "outside world" (P* implant).
Pinally, an N-implant is made (*N-Cap") over the
resistors providing protection against electro-
static field in the environment, Figure 2.

Boundary between P~ resistors and N-Epi makes an
N-P junction - electrical isolation of the
resistor. P-type area is always held on lower
potential than the N-Epi is. When a current
leakage problem occurs a current between
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contacts C&B is non-negligible; if the P-N
junction fails totally Ij, may go to microamperes
for positive voltages applied to terminal C
(reverse bias conditions).

After the wafers have been processed through the
front end, the iurnction integrity must be
maintained during the cavity formation and
subsequent senscr packaging operations. As an
exapple, a high pressure water scrub was
pinpointed as contributing greatly to junction
leakage. The measurement of the leakage,
failure analysis tn characterize the cause of
the leakage, and the impact of junction
modifications are discussed.

1. FRONT END LEAKAGE CONSIDERATIONS

1. JUNCTLON LEAKAGE
Note, on Figure 2, that the P~ resistor is
surrounded by several different P-N junctions:
P=/N-Epi, P~/N-CAP and P~/P* (junction Jj, Jg
and J3 respectively). Jur detailed studies
showed that P~/N-Cap i5 the most sensitive
junction Partly, becavse implant energies and
doses for F~ and N-Cap lavers are such to make
Jo iu:rtiuu depthks only .4pm. (J] junction

®as meanu-ed to be ~ ‘_hn: ) This puts N-
icn {Jg) virse to Si Jnf i intarface aad
tLive to enviruumental conditions.

exsure sevsor technoiogy it is a

wel: koown fact t4av septh of Jy bas to be
optimized. Jf Xy is smnll o thal reverse volt-
age bias deiLqu 3] ',, uumpletsiy (te wafer
surface), nn leakag: wcenrs.  Taere are vo car-

ther. Tha seasor

at this time hssever, because im-

wiafer surface feel the electrie
This results in a drift.

riers in the dapletcu zune (D4}
is unstable
purities on the
field of the Di.

In the cpposite cane when Xiy is large DZ in N-
Cap doesn’t reach the wafer surface and then
leakage is possible i1f Jg is weak. Conse-
quently, bty inc-easing phosphorous implant dose
(N-Cap) the leak monotonically increases.

Two dimensiona! crystalographic defects
(stacking faults in 8i) have been observed near
Jo-junction and correlated with leaking units.

Opposite is true alsc, by =limivating stacking
faults (high temparature oxidation) current
leakage was rceduced significantly.

2.CATS WHISKERS

Current leakage path, as described above, leads
from electrode C (Figure 2) through Epi and
through N-"2y above P~ to resistor via P-N
juaclion Jg. Then the path leads out through
piegoresistor and P* lead out. We assume that
junction Jo doesn’t deplete to wafer surface,

The leakage path may be broken however, at the
resistor edge by formation of "Cats Uh:skers'
-regions of P-type material going from a buried
Tawirior te wafer eerfara  through N-Cap.

Figure 3 shows a possxble whisker formed on one
side only.

. _F\i—_:::_tjt“:'_“f“ — i!— ]
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TIGURE 3 CROSS SECTION OF REISTOR 10 SHOW WHISKER,

If a complete whisker forws along both edges of
the resistor, the leakage path is broken. Note
on Figure 4a, b and c various cases that can
bappen in whisker formation. Case 4c¢ has, like
Figure 3, a complete whisker formed. Figure 4b
shows curious P-type islands formed near wafer
eurface This latter case however, would allow

leakage.

Figure 4 results were chtained by computer
calculation, cal~ulating in two dimensicns(x
axis perpendicalar to wafer surface) of Boron
and Phosphorous iumplant deasity Ng, Np. Boron
is implanted through a 810y mask (Figure 5).
S8ince Si0y is thinned down at the end, Np
distribution may resull. Horon at a corner is

L ey

—— s z:\lu

I2x ql

and A} be)ng Boron range for
"implant

with fz X2 * y
ths given inplant energy; S is
struggling" quantity.

N-Cap is deposited after 5i0g mask has been
removed with some constant concentration (By) at
the surface where top expression holds for

x ¢ Ap; the bottom one for x > Ap. Constant C
determines Boron/Phosphorous dose ratio. (See
Figure 8) Por points x,y where Ng/Np > 1,
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Figure 4. CAT'S WHISKERS CALCULATION: Dx = .
Dy = 1. AND OTHER PARAMETERS
a b c
A g8 6 6
Cy 2 2 2
Ag i @3 @

So 1 1 1
By 1 .25 .25
5 5 . i3

BORON IMPLANT

RN

FIGURE 5. BORON IMPLANT WITH A FHERY DIONIOE
MASK THINNED DOWN NEAR DPENING
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computer prints 1-digit; O for the opposite

case. Note: above calculation was done only
qualitatively, but with realistic magnitudes.
S8econd, no depletion width is added anywhere.

Finally, we add that etch patterns allowed us to
observe, experimentally, Cat’s Whiskers on some
units that did not leak.

II. BACK END LEAKAGE CONSIDERATIONS

1. HIGH PRESSURE WATER SCRUB

Completed wafers through the front end must next
have backside etch processing to form the
diaphragm which creates the pressure
sensitivity. The diaphragm formation along with
other packaging operations are stressful and can
cause junction degradation and current leakage.

b8 an evample, a high pressure deionized water
scrub operation which is used to rem-.e ink
residue from the wafer surface 1s analyzed.
scrub machine operates by sweeping a high
pressure nozzle across the surface of a spinning
wafer. The result of this scrub is a wafer which
has good adhesion characteristics which are
needed in the next step of the process. The
negative effect of the scrubber on the sensor
are discussed in the following sections.

The

2. MEASUREMENT OF LEAKAGE

The final device leakage is kept in the nA range
with 5v applied at 259C to achieve device
performance. Several wafers were measured for
leakage before a high pressure deionized water
scrub and then again immediately following the
scrub. Table 1 defines the leakage change on
the same die after receiving the high pressure
scrub. Notice the change in the I-V
characteristic which shows a "soft" junction,
evidence of a damaged or contaminated junction.
(See Figure 7)




Wafer #1
PRE HP SCRUB POST HP SCRUB
]
.7oA | 20.9p0A | .3pnA 121nA  |41pA | 2.7nA
.7oA D .6nA .5nA D 8.2nA
.4nA .TnA .7o0A 1200nA |.50A | 143nA
Wafer §#2
PRE HP SCRUB POST hr SCRUB
.5nA .6nA 1.5nA .5nA | 42nA |8.5oA
32nA D .3nA 529nA D .5nA
103n0A | .5nA .TnA 436nA | 32nA |316nA
J
Wafer #3
PRE HP SCRUB POST HP SCRUB
1.1 0.7 0.9 2700nA |18.2nA|12800A
2.3 D 1.3 8250nA TD |5300nA
1.7 | 30.2 | 0.7 585nA 154.7111\ 39.6nA
Table 1:
Junction Leakage Measurements
Vs = 5V applied from C to B in Figure 2.
TD = Test Die (Used as measurement position

reference)

3. FAILURE ANALYSIS '
The leakage location was pinpointed using light
emission photodetection equipment. The defect
area emitted low levels of light due to electron
trapping and discharge allzowing these areas to
be mapped and a decorative Wright etch was
performed in the vicinity of the leakage area.
SEM analysis of the post etched wafers showed
that microdefects were present in the implanted
resistor regions at the location of the leakage.
It is therefore believed that these defects are
responsible for the leakage experienced on the
device and are created by the high pressure
scrubber. See Figure 8 for SEM photographs of
the decorated defects.
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Figure 7. Scrubber Junction Damage

I-Y Curve

4. HIGH PRESSURE SCRUBBER EFFECTS

The high pressure deionized water scrubber
creates defects in various forms of processed or
unprocessed silicon. Unprocessed wafer starting
material was subjected to a 1650 psi scrub and a
defect count showed 135 defects/cm?. Since the
final device has a thin layer of thermal oxide
for circuitry protecticn, a study was completed
to determine the amount of damage created as a
function of oxide thickness. The increase in
thermal oxide was inversely proportional to the
defect density showing that one possible
protection should be thermal oxide (see

Figure 8). This atudy conflicted with the
defect densities found in the implanted resistor




!

geal  SkU  x8,000 ive

SEM Photos 0f Defects

Figure §.

areas of processed wafers which have a thin
oxide. Processed wafers had 224 def/cn? in the
resistor areas. The greater sensitivity to
defects in the resistor area could well be
attributed to an impe-fect latice in the areas
which previously received an implant, therefore,
on actual devices the thin oxide is not enough
to protect the circuit from def-cts.

5. ORIGIN OF CRYSTALUGRAPHIC DEFECTS

Previous analysis showed that high pressure
scrub (HPS), with water, ouften causes current
leahage oi pressure sensors due to P-N junction
degradation. Bolh micro-defects (impurity
related) and dis!ocations are possible
candidates.
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HPS unit, by Eaton Corporation, produces a high
pressure water beam by forcing water at Pggg ~
1000 - 2000 psi through a small hole (diameter d
~ .005in.). We measured amount of Ho0
collected, in say 30sec, coming out of the
orifice; this, with tube cross section
measurement, gave jet velocity of 145m/sec.
Pressure the jet exerts p at the exit of orifice
is p ~ pve = 2.9kpsi with water density being p.
Pressure p at the wafer was measured to be
700psi, and this is the value we used in
subsequent calculations. Difference in two
pressures results from beam widening (.015mil at
the wafer) and velocity variation across the jet
diameter. Before we propose a model for defect
origin, we examine here some auxiliary tests
done to eliminate other, unrelated sources of
defects.

*Electrostatic Discharge (ESD) of charges
accumulated on the wafer by DI water (isolating,
deionized water) cam produce crystal defects.
We changed DI-water to normal, conducting water
and grounded HPS tube and wafer chuck. Etch
pits remained- the damage was only slightly
decreased.

*Direct stressing of wafers with o ~ 2Kpsi
produced no etch pits after etch.

*Silg-formation: If HoO from HPS penetrates Si-
wafer regions (damage) of Sil0p could form. To
reveal these, a Sillp etch was used. No etching
took place.

In a "companion® experiment free Hg0 inside
wafer after scrub was searched using IR-
radiation. With known IR-absorption
sensitivity, we found that if any water got
inside the wafer, it must be less than 200 Hg0
molecules per Si-cell square.

*If indeed the defects were crystalographic in
origin high T anneal would decrease the damage.
We indeed found etch pit density decreased by
about & factor of 4 after a scrubbed wafer was
annealed at 950°C for 30 min. Blectrical




leakage test showed however, wide spread leakage
over the wafer, after the anneal.

*Kinetic energy of an impinging Hg0 molecule was
calculated to be 2me¥. This kinetic energy is
insufficient to move a Si atom from an
equilibrium site but is well within phonon
energies of the Si crystal.

Analysis of Laue spots (X-rays) didn't show
crystalographic defects however, due to
insufficient resolution.

RESUKE: W. c.cclude from above tests that
dynamic stress produced by water jeu crezates a
crystalographic defect.

Theoretical model coming out of these tests is
suggested: Crystalographic defects (probably
dislocations) are formed after HPS. Since
wafer’s top surface is (100), the slip direction
is [001] and, since this is also leaking
direction, we conclude that the Burger's vector
(b) is parallel to dislocation axis. This
narrows down the dislocation type to the Screw
Dislocation (SD).

The SD of the defect originates on wafer surface
(N-Cap) passes through DZ of Jy and probably
reaches to the other side of the diaphragm h ~
100pm.

We can now estimate total energy the SD contains

2
Gh7k R
ESD © 4r logE Th

where ro ~ Inm, is SD core vadius. By taking R ~
30pm for outer circle radius (diaphragm radius)
we get Egp = 7al or 43.5eV/(at plane); for
silicon Young modulus E the shear medulo G is
G~ E/3 = 5.321010Pa for [100]-direction and b =
.543uym. The total energy cortained in a 8D is
Egp ~ 8MeV
assuming SD straight, stretching from inside
diaphragm surface to the outside one.

The important questicn now is if the HPS jet can
produce this much energy. Since diaph.agm
Al p
strain is € = — = — we have
i E
.44+107°% using p and E numbers for HPS and
Since active volume of a

E =
Si already quoted.
diaphragnm in
T 2
Y =-Dh,
4
-11 3
we have ¥ = 1.1*10 w with D
jet cross section radius).
below the jet is

.01521l (water
The elastic e~ergy

g« loev - By = 10M%v

EL 2 2

Clearly, the water jet produces macroscopically
enough energy to generate 1250 dislocations on
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10-3cw2; not all available energy is used for
dislocation generation.

Finally, let us mention again that no clear
identification of dislocations have been made.
Other types of defects may be playing the key
role here; idea of dislocations is attractive
however, because once created it may split into
two partials (Shockley) that would encircle a
stacking fault. The latter were observed.

0o the other hacd, micro defects are, strictly
speaking, surface defects; N-Cap thickness
dependence of leakage (that was observed) would
be in wrong direction when assuming them.
Jtrongest evidence against dislocations playing
the key rolc here is weak directional properties
the etch pits reveal.

6. DEVICE CHANGES TO "HARDEN" JUNCTION

As previously mentioned, one of the primary
delicacies of the sensor configuration is a dual
layer junction structure to confine the resistor
in an equapotential envelope. The envelope
forms two junctions, one at 0.4 ym and one at
1.0pn. (See Figure 2.) The shallow nature of
the top junction along with the relatively high
n-type doping, as compared to the p-type
resistor, make it very susceptible to leakage.
The upper junction structure was removed to
study the effects of the scrubber. Samples with
only the deep (1.04) junction showed improved
reverse breakdown characteristics (45v rather
than 14.5 on standard structure) and did not
have the leakage problem after scrub. Only
3/188 die degraded without the upper junction
where 49/188 degraded on the dual junction
structure. Since the equapotential envelope is
critical for device performance, the upper
junction was re-introduced but at a lower dose
allowing the depletion region to extend all the
way to the thermal oxide on the surface, as
shown by the calculation and diagram, Figure 10.

METAL 5102 X0
\egzm || iz
— , 7%
N CAP ""i_ﬁl o ']f' B
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LR L =t
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FIGUAL 10, DEFLETION REGION IN N-(AP




Standard depletion width: [3]

[ 111/2
I Ny 1
i 1
INg (Na+Ng) |1
L JJ

[
|
Xpo = ¢
|
L

n~cap = 0.1Ng

p resis = Ny

/]

Xpo = 0.128um ¢ 0.4p junction depth

Beduced n-cap:
n-cap = 0.01N,

p resis = Ny

Xp0 = 0.428pm > 0.4p junction depth

The extension of the space charge region to the
oxide surface severs the leakage path caused by
a damaged junction. This was experimentally
verified on a wafer which had only 10/188 die
degrade where the dual junction structure had
45/188 degrade after the scrub.

CONCLUSION

To provide efficient conversion from pressure to
electrical signal on a piezoresistive sensor,
current leakage must be minimized. The creation
of cats whiskers and modifications to the
surface (N-Cap) junction are the primary tools
to control the leakage levels in the front end.
These modification also effect the sensitivity
of the device to back end operations which can
introduce defects into the resistor regions. An
understanding of the back end operation’s
mechanisms creating defects allows one to
control/eliminate the degradation to the sensor.
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"The PVF2 Piezoelectric Polymer Shock Stress Sensor - Some Techniques for Application
Under Field Test Conditions"
R. P. Reed and J. I. Greenwoll

The basic design and some fundamental characterisitics of PVF2 shock stress
transducer elements were described by two papers at the [4th Transducer Workshop.
Since that meeting, the sensor has become more readily available. It has been applied in
many additional varied applications under severe laboratory and field test conditions and
calibration has been extended to both lower and higher peak stresses over the range from
2 psi to more than 6 million psi (46 GPa).

The exceptional versatility and application range of this measuring element allow it
to be used in diverse circumstances. Many of these present distinct sets of measurement
problems.  Successful measurement with PVF2 sensors in many practical situations
requires that response of the entire measurement systern be considered with the sensor
being only one critical component involved in the measurement. This is particularly true
of experiments where stress waves generated by explosion are to be measured under field
test conditions. A hybrid combination of hardware and software tools must be applied in
both prediction of the voltage waveform that must be recorded and also in the the
reduction of that experimental voltage record to the desired accurate measure of applied
transient stress,

Contrary to normal application of piezoelectric sensors as pressure sensors or
accelerometers, the conditions of field use often require that the PVF2 stress transducer

be applied in a manner that is in neither of the traditional ways: charge mode or current
mode. Rather, application must often be in a well-defined intermediate mode.

This paper was unavailable for printing at press time.
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THE PVF2 PIEZOELECTRIC POLYMER SHOCK STRESS SENSOR - SOME TECHNIQUES
FOR APPLICATION UNDER FIELD TEST CONDITIONS

Comment: Wayne Charlie (Colorado State University): This sounds like
an application where yvou can use fiberoptics to take your signal out.

A: Ray Reed: Well it is possible to use fiberoptics, and fiberoptics
are coming into use but at some level you always have signal distor-
tion. What you are saying is that you need higher bandwidth. It
would be nice to have higher frequency recorders as well. This deals
with a situation where you don’'t have access to those and demonstrates
a very practical technigque that works to get you out of a situation
that you prefer not to be in. Peter Stein would tell you immediately
that you always want to deal with systems that linearly scale and have
adequate bandwidth and are not therefore frequency creative. Fre-
quency creation in this situation simply means you have distorted the
signal; it doesn't mean that you have lost the information but you do
have to treat it properly. An essential to treating it properly is
the proper characterization of that specific real situation as it ex-
ists in the field.

Q: Pete Stein (Stein Engineering): How sensitive is the process to
the individual specific cable? Do you have to check each particular
cable over several 100 or 1000 feet or can you determine for a par-
ticular catalog number of a cable, a procedure?

A: Ray Reed: Because cables get damaged in the field, the catalog
specification is not adequate nor is the mathematical model of the
cable. They are perfectly fine for prediction of th=2 distorted wave
form so that you can go ahead and signal condition a..d record. But,
they are not adequate for unfolding accurately.

Comment: Ron Tussing (NSWC): I can further comment on that. We
have our low-noise, low tribo-electric effect cable made for us, and
it is available to other people too. Every batch we get is different

and 1is gquite a bit different, and is supposedly the same; but for
instance, the capacitance per foot will wvary between 30 to 40
picofarads and averages around 35. This 1is supposedly made for the

Government through specification; buy if you want the cable, you buy
it. you take it the way it comes, and so, we do different things, as
Ray has said, but we would match each batch for each length of cable.

A: Ray Reed: Not only do cables vary from batch to batch but they
vary from place to place. In field installations, people have fre-
quently matched and put two or three cables in sequence. They have
gone through hkreaks for gas blockings; and so, you always want to do
the characterization, if for no other reason, to assure yourself that
you have what you *think. But if you are going to characterize it, it
is absolutely mandatory that you do this sort of thing. With regard
to Ron's comment--somebody said butterflies are free, charge is too.
In a piezoelectric circuit, and particularly used open circuit, you
will learn very quickly how much free charge there is around from
piezoelectric sources and just hanging around from some change of tem-
perature or a variety of things: and that's again, why we have always
been driven in the field to use these gages in the current mode, al-
though in theory, they can perfectly well be used in a charge mode. I
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peint out that we are using neither current nor charge mode. At the
last meeting, I made the strong assertion that you must use them one
way or the other, or don't know what you've got, and I promptly went
off and did this which is neither fish nor fowl, it is somewhere 1in
the middle. I point out, there are other applications to this tech-
nique. I give this paper in the context of the application of PVF2.
The techniques are perfectly general when applied to any measurement
system.

Q: John Kalnowski (EG&G): What type of cable do you use in the
field?

A: Ray Reed: A variety of things. On the last field experience, we
used RG22 which I preferred, because it is a balanced cable and avoids
some nolise problems. On the other han., when you use it with physi-
cally available equipment; you have problems because that equipment is
almost always single ended; and so, matching that cable to regular

carters 1s a problem. Since then we're using combkinations of cables
ranging from, I think, an RG55, which is one I wasn't familiar with,
RG213 going then to RG214 in one continuous run. And so, you have all

of these things stacked together plus gaps in the system where you
have to make the transition from one to the other.

Q: John Kalnowski: On your RG22 did you have to use a cable
equalization?

A: Ray Reed: In this peculiar situation, you don't want to equalize
because you're throwing away gain. We started that way, and it
finally dawned on us, that the cable is partially integrating for us.
If we just throw another little capacitor on there, we'd complete the
integration, and we'd be half way home. All you've got to do then 1is
complement that with this digital filter and proceed on your way. You
have got high signal to noise and the data as well.
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Table 2. PVDF Gauge Parameters

Gauge
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{cn')

0.01
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Ist 7-1%

0.09 9.4
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0.C1 7.1

Metravib 0.7 - 35

Tontrolled Shock
Loading (GPa)

8.0
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Figure 4. PVDF Gauge Charge as a Function
of Shock Stress. (preliminary data,

detailed data analysis in process).
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Representative data from a pulsed fon  beam
experiment are shown n figure 7, Again the
desirable large signal 1o noise ratin resulting
from Lhe PVDF  charge ontpot  characteristic is
evident.  Urambrguens  (amplitude  and  recorvding
time) shock wave  measurements in these
environments could not be made witheat the PVUF
output  due Lo the  large, electiroally nodse,
pulsed power accelerators used to generate ion and
photon fluxes.

Gas Shock Tube Methods

PYDE  transducers have seen successial application
for woasuring low amplitude  shock  in gas  (air)
shock tuhes.  The gauging requirements were casily
met fue to the versatility of PyDF, permitting air
vhask medsiremant g wilh : time pesaolution
previcus by not obtainable. Csperimentaiion at the
Kteeh  <hock tube  facility has  established the
geefulness of PVOF as  an  air  sheck  transducer,
Penl transducers  were  bhonded  onto a shock tube
insert as shown in Figure 3, A reference  gauge
(PR model  107A07  a guarts element gange with a
vesonant frequency of 275 kHz, and a4 sensitivity
af aboutl .o me Pa over a range froem 0 to 800 kPa)
wan usod to determine equilihrium pressure after
the initial air shock reflected from the shock
tuhe inserct,

Aiv shiv k. werae  initiated in the tube producing
vefloacted pressures hetween 8 and 200 kba, The
cinnal  frem  the  PYDE was  vecorded by oa 1eoCroy
sAnuh digital oscillosenpe,  The PYOF cutput  was
vivcapited  in Lhe charge mode, with the sitgnal sen
tdivertly to the seope input (10 N aver 0 meters
ol cable [12]. A tepical data record is shown in
Pigue 1, which  shows  the  excellent time
resolut ion Lhet can  he  obtained with these
fransducers,  The data slitained during this series
at  shock  tube eeperiments is shown in Figure 10,
aggGesting a uniacial wtrain calibration tactor of

t 5o A il i H
1nx ES 0 pCrs

for the low-nverpressure  air  sheck  response  of
VRE . A linear respanse fo air shock is expected
pp Lo pressures of appro«imately 100 MPa (1 Kbar).

At shoek measurements with PYOF were complicated
by thermal effects. The pyroelectric response of

(BRI by oamtte darage, with the charge dons ity pen
ihpres kel an herneg ity A lent v prensuren o f
abrnd 1y Kl Foegr 4l the lowest preacsares dnsed,
thee temperatine an the afr shack war a tew degrees
aboge ambriont a0 opbectantial of ot was ol sed
wher Phee T gt - L foier ati shog b e el e

A bive avea of the trepsducer,  The chavacteriotie
time foo litfusion of Yeat theaugh  the  sputtered

leads  in an the arder of 1 p, carmelating to the
sigual degqradation sees, i An e e e
oo b oo, a thin Film ef oo ter o b wan pla s
oy Lhe o tiee grea of Thee tranedhe e o e Lo
Slivw the dprbuaom oob beat thecogh the ciee broalen
Thi voapendiont o Tation pem el the theymal
el le 1 i 1ingg (I ot pald Tod e b [ETHID
coprerimentation, o Piebd  applecoaticn., thermal
el e 1 e el b L f e b bee] by paontoa b ipeg the

Pyl transd e with ot film of  Tefion or
ather suitable cavering.,
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Ion Beam Experiments.
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SUMMARY

PVDF has many applicatians in shack measurements.
Recent advances in stretching and  puling
technigues have resulted in o reproducible  +hock

transdw er  which can respond to fast-rising (“ns)

shock  waves, Atfenting ta aquality control
veguirement 5 uf product ion antl  details of
calibration tests leads ta identical pesponse for
gauges  produced  at separats facilities in brance
and the United States, The<e  transducers  have
Leen used at  stresses as high as du GPa.  Lower

stress calibration (10 Kb uf simitar transducers

using a ga, shock tube have also heen reported.
the wide vange of PVDF  gauge applicabilily s
limiled primarily by the experimentalist's

imagination.

REFERENCES

(1 Baner, ., "Rehavior of Ferroelectric
Coramics anil - PVEL Palymers  Under  Shock
Ioading,” Shack WavBs in Condensed Matter -
1961, eds. W.1. Hellis, 1. Seaman, R.A.
Grabam, Amer. Inst, Phv., 1982, p. 251,

{#)  Bauer, P "Meznelectric and  Flectric
Properties of PVE, Polymers Under Shock Wave
Artion: ﬂpwl|fAI{0n ta Shock Transducers,”
Shock Waves ip Condensed Matter - 1983, eds.
TR, Asav,” RTA. Grabam, G.K. Straub, North
Hel Pand, ll?if\l, .. b

(4} Baner, ., "IV, Palymers: Fervoeiectrig
Polavization and' Piesopelectric  Properties
Hnder  Dynamic Pressure  and  Shock  Wave
Action, " Feyroelectrics, Vol, 49, 1903,
f.'. "‘] . ) - B o

{1) Baner, Fo,  "Peoperties  andd High  Preassure
s b i oaning flespone of AN |
Ferroeloctyic E L Falymes Gauyes,
Iechnigues and Theor§ of Stree © Measurement -~
for '-iain_il "'r“’__'ijl"l' al |f|| cds . I.B.
Stout,  FLRL. Norwood,  MUE, frn:nm!y, Amer,
S, Mech, Eng., IQBF, pp. 19-25.

(N fee, .M., Wb Williams, K.n, tGrabam, and
Fes Baner, “tadies of the Bauer
Picsoelectric Molymer  Gauge  (PVFL)  Under
Imp t Laading, ™ Shack  Waves  in l‘nn'!tnapu
Matter, ¥.M. tnpla, “ed. , Pienum Press, New
vork, JuReopoan!

(6)  Togelaoan, Dod,, 1M, Lee, D.W. Gilbert, W.R.
Conley,  R.A. Graham,  R.P. Reed, and .
Bauer, "tahrication nf Standardized
Picsootectyic Polymer Shoek Ganges by the
Bauer  Method, S sk wWaves in mnrwnsf'd
Malten g/, Flaevier Hcience fublishers,
Bov., 108R, p. bl

(8] Goabam,  ROA . LM, e andd B Baner,
"Hesponse ot Baner Pieroelectric  Folemm
Sireas hauges  (PYDE) ta Shock  Loading, ™
Sl b Waves in Condensed  Matter - 14987,
[Taevier Sitence Fublichers, BV., 168H,
h R A1 /P

(8)

(9)

(1)

(ry)

(1)

126

Reed, 1 - “Recent in
Piezuelettric Polymer
Mroceedings The  Range Commanders LOIJIl_f:‘LIJ
Instrumentation Transducer Committee,

Transducer Workshop, ed S.F. Kuehn, CoTorado

Springs, €0, 16- ]9 June 1987.

Developments
Stress Gauges,

Baver, F., "Method and Dewlce for Polarizing
FPTFHP]P(Trif Matarials, U.5, Patent =
4,011,260, 9 September 1986

1 ASI

efd.,

Shock  Hugoniot Data,
University of
Berkeley, CA, 197y,

Stanley P, Marsh
California Press,

lee, L.M,, J.P. Berhault, J.b.
b. Bauer, "TVDF Appiications
Vibration Heasurements

Chambard and
in Shock and
and  Control," 30uh

ARA  Meeting, Albuyuerque, NM, 10-13 October
1688,

Reed, R.P, J.I. Greenwoll, “The PVDF
Plpznp19rtrlc Polymer Shock Stress Sensor:

Signal  Conditioning and Analysis for Field
Test Application, SANDBE-2007 -Ut - 4/,
May 1939, T




PIEZOELECTRIC POLYMER SHOCK GAUGE APPLICATIONS

Q: Steve Baker (Oakridge National Laboratory): I noticed that the

rise time is very fast on this device. What is the frequency band
width?
A: Larry Lee: The gauge is responding to the stress difference be-

tween the two faces of the transducer, if it's properly bonded and
properly fabricated into a mechanical matching backing. It has a
transient time at about four nanoseconds. Sc consequently, you're
usually limited by the recording device.

Q: Steve Baker: This is flip side to what you're doing. You're
measuring very high pressure levels, large stress. What about on the
other end? Could vou use it in the very low pressure end since it has
more gain than other types of piezoelectrics?

A: Larry Lee: What do you mean by low pressure?
Q: Steve Baker: Down to a few psi or lower.

A: Larry Lee: The lower pressure data that I showed down to 10 and
104 pascals, I think, one psi is 7 X 10% pascals. So those data were
taken down to a fraction of a psi.

Q: Pat Walter (Sandia Labs): On the pressure time, the shock tube
data, you didn't specifically say it, but I just inferred from your
preamble that the backup material to your gauge in that was teflon?

A: Larry Lee: That was actually plexiglas, and when we look at the
shock response down at very low pressures the teflon, the plexiglas,
the Kel F; there are differences but they are not as noticeable as the
chart I showed, which went up to a 100 kilobites.

Q: Pat Walter: You showed some at least one piezoelectric constant
up there. What do they know about the other piezoelectric constants?
Like the shear constants D13,

A: Larry Lee: Not near enough, everything I've talked about has been
in a condition of one dimensional strain shock lcading. When we want
to record the milliseconds, and we want to use this gauge in other
arenas, if you will, there has to be work done in that area. One
piece ¢f work that's been done now, 1is using the PVDF in a spilt
Hopkinson bar configuration, where it was between steel bars. The
only good news out of that is the fact that the gauge behaved in basi-
cally the same manner. The output was shifted, not shifted markedly
SO you were getting more output, because we think you're getting con-
tributions from the others.

Comment: Pat Walter: The reason I asked about the other constants
and just concluding the discussion, if you ignore the high-stress ap-
plication you might infer that the material is not particularly excit-
ing for one reason, it just has a large pyro-electric output so you
have a lot of thermal-drift associated with it. But in Anthony's talk
("Built-in Mechanical Filter in a Shock Accelerometer") he eluded to
the problem of zero shift, which you always get in fero-electric
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ceramics at high levels. Just because you get some misorientation of
the dipoles since that material seems to be attuned to working at the
high-stress level that might be a candidate material for pyro-electric
type shock accelerometers.

A: Larry Lee: Very well could be.

Comment: Ray Reed (Sandia National Labs): Larry I'd like to make
some comments to what you've just said. First with regard to the band
width, this group customarily thinks in terms of bandwidth other than
being a shock reverberation, you do not. The gauge has a peculiar
characteristic that probably most of you are not accustomed to think-
ing in terms of. Namely that when you're interested in looking at
very short duration, fast rise shocks, the gauge response in one man-
ner, it responds in the fashion that Larry described as looking at the
stress difference between opposite faces. So on each reverberation
it's behaving as a thick guartz gauge. Through that process depending
on the nature of loading, vyou ring up to equilibrium state very
quickly over about ten cycles. So in about 15 nanoseconds you've rung
up to the peak amplitude. So the inverse of that you might think of as
the bandwidth. It is responding in like a 10° hertz. Second comment,
was in regard to Pat's question regarding the transverse coefficients.
while neither of us said so, one of the favorable characteristics of
the gauge, in a sense, 1is that it does have a hydrostatic response,
which means that the normal directional loading is not completely com-
pensated for by transverse loading. The D31 coefficient that you
asked about Pat is not a shear coefficient, it's a transverse coeffi-
cient and both 31 and 32 are not zero but they're not at all well
known for this particular material and we have work in process on
that. But with regard to your question about shear response, for-
tunately, this material does not have a shear response. That is one of
the coefficients that is null in the sensitivity matrix. Beyond
that--the comment with regard to the pyro-electric response is an open
question right now. This material is extremely pyro-electrically sen-
sitive, it's a better temperature sensor than it is a stress sensor in
fact. And so, there is a question that we're trying to deal with 1is,
"What 1is the interaction?"” In the paper that I presented here last
time, I made the comment because of the way those coefficients
interact--it is quite possible that what we're seeing as a stress
calibration is in fact a combination of stress loading and shock heat-
ing. Because of the way the experiments have been done to this point,
it does not allow you to separate those two effects. I believe,
Larry, you'wve had a number of results or at least a few where not only
have you been able to track the rise time but also the release path
all the way back to the base line. And that's the indication that at
least in thoese particular experiments that we have at very high
stress. The heating was not a problem, because that would have
remained while the stress vanished.

Comment: Larry Lee: We would expect it not to begin to come back to

the baseline 1f the heating was having the kind of effects we typi-
cally think of.
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"Selected Time Histories and Power Spectral Densities of Environmental Data Taken on
the Smart Radar at the Army Proving Grounds Yuma, Arizona During March 1933"
Wesley Paulson

Twenty-six shots were fired during the test of the SMART RADAR (4 calibration and
22 evaluation). Immediately after each shot, the data were examined and were found to
be of good quality. This "near real time" examination also showed a general increase in
the various responses (pressure, acceleration and strain) as the test progressed (as the
SMART RADAR was moved closer to the gun). Some differences were seen between
those tests where the radar was facing the gun and those tests where the radar was
orthoginal to the gun. These differences seemed most pronounced in the case of the
strain data.
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GROUNDING & SHIELDING

DIRECT EFFECT-ACCURACY/PERFORMANCE
EQUIPMENT & FACILITY LIMITATIONS
UNDERSTAND & VISUALIZE

PROBLEMS ARE "MYSTERIOUS"

INSTRUMENTATION SYSTEM

MEASURE IOW-LEVEL SIGNALS
REJECT NOISE-COMMON MODE

TRANSITION GROUND ENVIRONMENT
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INPUT CABLE

FHYSICAL CONSTRAINTS
ELECTROSTATIC SHIELDING
A) MYLAR/FOIL

B) BRAID

ELECTROMAGNETIC PICKUP
A) MINIMUM LOOP AREA
B) MAGNETIC SHIELDING

C) INTER-8-WEAVE CABLE

BEST RESULTS

TWISTED PAIR

MINIMUM LOOP AREA

FOIL SHIELD-HIGH COVERAGE

CONTINUOUS SHIELD THROUGH INTERFACES

AVOID HIGH MAGNETIC FIELDS

135




GUARD SHIELD RULE

SIGNAL CONDUCTORS & ELEMENTS MUST BE
ENCLOSED IN AN ELECTROSTATIC SHIELD

& NOT CONDUCT ANY SHIELD, GROUND OR

OTHER NON-SIGNAL CURRENTS.
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COMMON MODE SIGNALS
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FIGURE 16 CURRENT SHUNT IN DELTA CONNECTED LOAD
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DYNAMIC MEASUREMENTS
| ARE SELDOM ROUTINE

| By: J. F. Lally
I PCB Piezotronics, Inc.
Depew, NY 14043

Excerpts from tutorial presented at:
15" Transducer Workshop

Cocoa Beach, FL
June 20-22, 1989




3. UNDERSTANDING THE STMILARITIES OF VOLTAGE MODE INSTRUMENTATION:

QUESTION OFTEN COMES UP ON THE DIFFERENCES IN CHARGE AND VOLTAGE MODE
INSTRUMENTS? THE QUESTION USUALLY COMES FROM SOMEONE FAMILIAR WITH
CHARGE MODE SYSTEMS. WE FIND IT HELPFUL TO ANSWER IN TERMS OF
"SIMILARITIES™ SINCE SIGNAL CONDITIONING FUNCTIONS IN BOTH SYSTEMS ARE
BASICALLY THE SAME. THE FUNCTIONS MAY, HOWEVER, BE ACCOMPLISHED IN

DIFFERENT ILOCATIONS IN EACH SYSTEM.

THREE BASIC SIGNAL CONDITICNING FUNCTIONS IN BOTH SYSTEMS ARE:

1.) IMPEDANCE CONVERSION
2.} SIGNAL NORMALIZATION
Fin') GATN ADJUST

ALL THREE FUNCTIONS ARE COMMON TO BOTH SYSTEMS—-ONLY THE LOCATION AND

METHOD OF ACCOMPLISHING THE FUNCTION MAY VARY.

TMPEDANCE CONVERSTION:~-THE FIRST FUNCTION

THE PRTMARY FUNCTION OF ANY PIEZO SIGNAL CONDITIONER IS TO CONVERT HIGH
IMPEDANCE CHARCGE OUTPUT FROM CRYSTAL INTO A USABLE LOW IMPEDANCE

VOLTAGE SIGNAIL C_UITABILE FOR RECORDING PURPOSES.

IN CHARGE SYSTEM TH1S IS ACCOMPLISHED RFMOTELY BY A HIGH GAIN
CAPACITIVE FEEDBACK AMPLIFTER IN THE CHARGE AMPLIFIER. IN THE VOLTAGE
MODE SYSTEM IMPEDANCE CONVFRSION IS ACCOMPLISHED BY MOSFET OR JFET

MICRO-FLECTRONIC AMPLIFIFER SFALED INSIDE THE SENSOR.
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TECHNICAL AND ECONOMIC SIGNIFICANCE:

THE LOW IMPEDANCE VOLTAGE MODE SYSTEM OFFERS IMPROVED SIGNAL/NOISE
CHARACTERISTICS, ESPECIALLY WHEN DRIVING LONG CABLES IN ADVERSE FIELD,
FACTORY OR UNDERWATER ENVIRONMENTS. ECONOMIC SIGNIFICANCE INVOLVES USE

OF LOWER COST STANDARD COAXTAL CABLE AND SIGNAL CONDITIONERS.

SIGNAL NORMALIZATION (OR STANDARDIZATION)-THE SECOND FUNCTION

CHARGE AMPLIFIERS HAVE A POTENTIOMETER CIRCUIT TO ENTER CHARGE

SENSITIVITY.

VOLTAGE MODE SYSTEM

1. NORMALIZATION MAY BE ACCOMPLISHED WITHIN SENSOR, OR

2. IN THE POWER/SIGNAL CONDITIONER

NORMALIZATION INSIDE THE SENSOR-TECHNICAL ADVANTAGES

1. SIMPLIFIES OPERATION
2. MINIMIZES RECORD KEEPING IN MULTI-CHANNEL SYSTEMS
3. FACILITATES INTERCHANGEABILITY WITHOUT MAKING CIRCUIT

ADJUSTMENTS

GAIN ADJUSTMENT-THIRD FUNCTION

1. GAIN ADJUSTMENT CIRCUITRY IN CHARGE AMPLIFIER
2. VOLTAGE MODE SYSTEM UTILIZES GAIN AVAILABLE IN READOUT

INSTRUMENT OR IN POWER UNIT, IF REQUIRED
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TECHNICAL AND ECONOMICAL SIGNIFICANCE

IN A CONTROLLED LABORATORY ENVIRONMENT OR OTHER CONDITIONS SUITABLE FOR
OPERATING HIGH IMPEDANCE CIRCUITRY, GAIN ADJUST IN CHARGE AMPLIFIER
ALLOWS FULL UTILIZATION OF THE VERY BROAD DYNAMIC RANGE OF PIEZO
SENSORS.

SINCE MOST APPLICATIONS INVOLVE LIMITED DYNAMIC RANGE, IN THE VOLTAGE
MODE SYSTEM, GAIN, IF NEEDED, MAY BE OBTAINED FROM LOW COST POWER
UNITS, EXISTING INSTRUMENTATION AMPLIFIERS, OR IN THE READOUT

INSTRUMENT ITSELF.

THAT DEPENDS ON THE TECHN(CAY, CONSIDERATIONS INVOLVED WITH THE
APPLICATION. THE TECHNICAL AND ECONOMICAL ADVANTAGES OF OPERATING WITH
A LOW IMPEDANCE VOLTAGE CYSTEM ARE READILY APPARENT WHEN:

1. DRIVING LONG CABLES

2. OPERATING [N ADVERSE ENVIRONMENTS NOT SUITABLE FOR HIGH

IMPEDAN | CLlRCUITRY

3. AND DI} CONTTNIOUS TUNATTFNDED MONITORING APPLICATIONS

ON THE OTHER HAND, IN THE LABORATORY WHERE CONDITIONS ARE DIFFERENT,
THE CHARGE AMPI,IFTEP SFRVES A USEFUI. PURPOSE WHEN VERSATILITY IS
REQUIRED FOR USF WIIii A WIDF RANGE OF PIEZO SENSORS. IN INTERIOR
BALLISTICS APFLICATIONS, THE ELECTROSTATIC CHARGE AMPLIFIER FACILITATES
STATIC CALIBRATION, IN SOME PRESSURE AND FORCE APPLICATIONS IT PROVIDES

FOR QUAST-STATIC VYSPONSE.




SIGNAL CONDITIONING FUNCTIONS
IN
CHARGE AND VOLTAGE MODE SYSTEMS:

* |MPEDANCE CONVERSION
* NORMALIZATION
* GAIN ADJUST

CHARGE MODE SYSTEM:
NORMALIZATION

10 TURN POT
pC/G HIGH IMPED ANCE G%
E — 3 OUTPUT ©, !
LOW NOISE C ABLE 4 READOUT

CHARGE Eﬂ\‘
ACCELEROMETER CHARGE

AFPLEER GAIN ADJUST
{REDUNDANT IN
CHARGE SYSTEM)

IMPEDANCE
CONVERSION
)<

/

S/

NORMALIZATIQN 7
iIN ACCELEROMETER @
CURRENT G
mV/q LOW IMPED ANCE SOURCE ~—J_
P % ———5 OUTPUT %

ORDINARY COAXIAL OR
VOLT AGE MODE RIBBON W IRE CABLE
L 3

MODERN FFT ANALYZER OR
VIBRATION MONITOR WITH
BUILT~IN CURRENT SOURCE
FOR 1.C.P. ACCELEROMETERS

LI

PIEZOTRONICS
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4. TONG CABLE CONSIDERATIONS:

HISTORICALLY, DRIVING LONG CABLES HAS BEKN ONE OF THE MOST “GREMLIN"
PLAGUED APPLICATIONS. <COMMON PROBLEMS HAVE BEEN ASSOCIATED WITH
ENVIRONMENTAL CONDITIONS SUCH AS DUST, HOISTURE, LIGHTNING AND RODENTS
EATING THE CABLES. OPERATIONAYL PROBLEMS INCLUDE GROUND LOOPS, POOR

SIGNAL/NOISE AND AMPLIYUDE/FREQUENCY CALIBRATION OF LONG LINE SYSTEMS.

THE CAPABILITY CF THE LOW (MPEDANCE VOLTAGE MODE SENSOR TO DRIVE LONG
ORDINARY COAXTAYL, CABLES TN ADVERSE ENVIRONMENTS HAS HELPED NEUTRALIZE

OR AT LEAST MINIMIZE THE EFFECTIVENESS OF THE "GREMLINS".

THERE APE SEVERAL GENERAI CUIDFLINES FOR DRIVING ILONG CABLES THAT WILL

HELP MINIMIZE PROBLEMS AND IMPROVE MEASUREMENT RESULTS.

SEE ILLUSTRATIONS: GENERA{ GUINELINES FOR LONG CABLE DRIVING
SICHNAL DELAY AMPLITUDE ATTENUATION

L(NE RESONANCES

SINCE 1T IS RELATIVELY SIMPLY 10 TEST YOUR LONG LINE SYSTEM, THE

MESSAGE HERE IS "7TEST"™, "DON'( GURSS"™!
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LINE RESONANCE (overshoot) ADJUSTING 073A LINE IMPEDANCE
RESULTING FROM SQUARE MATCHING RESISTOR TRIMS OUT
WAVE, FAST RESPONSE, TEST LINE RESONANCE
SIGNAL INPUT
400 ft. RG-62U - No Series Resistor 400 ft. RG-62U - 91Q Series R (073A)

—»>| |=—10us —> f[<*—10us

LINE RESONANCE (overshoot) IS CAUSED BY INDUCTANCE IN THE
LONG LINE. THE SERIES RESISTOR ACTS LIKE AN LP FILTER AND CAN
BE ADJUSTED TO TRIM QUT OVERSHOOT.
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OPERATING IN LOW IMPEDANCE VOLTAGE MODE
PERMITS WIDE SELECTION OF STANDARD LOW COST
CABLES AND CONNECTORS.

ORDINARY COAX

- ).

FiG 58U
BHC RG-62U

,2-PIN SOLDER CONNECTCR
10-32 THD

fpmts \'-_

(Zats i
TR g
2 mea

_','RIBBON WIRE

STD IDC
(Insulation Displacement Connector)

RIBBON._ /

N

/

o

ADHESIVE
MCUNTING
PAD

£




5. RANGING:

QUESTIONS OFTEN COME UP ON RANGING O™ PIEZ0 SENSORS. WHY WOULD A
PRESSURE TRANSDUCER RANGED FOR 100 PSI BE SUGGESTED FOR A ONE PSI
MEASUREMENT? WHY DO SOME TRANSDUCERS LIST A 5 VOLT AND 10 VOLT OUTPUT?
HOW DO I SELECT A TRANSDUCER TO MEASURE Y 1 PSI AT A STATIC LEVEL OF

1000 PSI?

PIEZO TYPE SENSORS HAVE A VERY WIDE LINEAR DYNAMIC RANGE WHICH CAN BE
AS MUCH AS ONE MILLION TO ONE. IF WE TAKE A LOOK AT THE CONSTRUCTION
OF A TYPICAIL QUARTZ FRESSURE SENSOR COMPARED TO A STI.AIN TYPE SENSOR,

IT WILL HELP UNDERSTAND HOW THE WIDE LINEAR RANGE IS ACHIEVED.

SEE ILLUSTRATIONS: QUARTZ PIEZO PRESSURE SENSOR

STRALIN GAGE

NOTE THAT THE PRIMARY DIFFERENCE IN THE TWO SENSORS ILLUSTRATED IS THE
THIN DIAPHRAGM ON THE QUARTZ SENSOR IS ALMOST FULLY SUPPORTED BY A
HIGHLY PRELOPDED RiIGID QUARTZ SENSING ELEMENT. THE PRELOAD TMPARTS
EXCELIL ENT LINEARITY FOR LCW LEVEL MEASUREMENTS AND THE RIGID QUARTZ

COLUMN SUPPORTS THE DIAPHRAGM TO ESSENTIALLY THE YIELD STRENGTH OF THE

QUARTZ.
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QUARTZ PIEZO
FRESSURE SENSOR
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THIN METAL DIAPHRACM
SUPPORTED BY A RIG!D
COLUMN OF GiARTZ

STRAIN GAGE

1
1{ fiesis TIVE
i STRAIN
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THIN UNSLIPE Dbk
DIARPHIRAGM




AS CAN BE SEEN, THE DIAPHRAGM OF THE STRAIN TYPE SENSOR IS UNSUPPORTED.
THE DIAPHRAGM MUST FLEX IN ORDER FOR THE STRAIN SENSITIVE ELEMENT TO
CHANGE RESISTANCE. DIAPHRAGM THICKNESS IS, THEREFOKE, GAGED TO SUPPORT

A LIMITED PRESSURE RANGE.

DYNAMIC RANGE TO 10,000 PSI. AS AN ICP, (INTEGRATED CIRCUIT PIEZO

SENSITIVITIES AND RANGES.

SEE ILLUSTRATION: -RANGING

DESCRIBES HOW A TYPICAL WIDE DYNAMIC KANGE
CHARGE MODE TRANSDUCER IS RANGED AS AN ICP

VYOLTAGE MODE DESIGN

THE BIAS, (TURN CN VOLTAGE), OF THE BUILT-IN IC CIRCUIT AND POWER

SUPPLY VOLTAGE DETERMINE THE VOLTAGE SWING:

12 vV BIAS 18 VOLT POWER 5~-6 VOLT SWING

12 v BIAS 24 VOLT POWER 10 VCLT SWING
THE CAPABILITY TO MEASURE SMALL DYNAMIC PRESSURES UNDER HIGH STATIC
LOAD IS5 A UNIQUE CAPABILITY OF PIEZO PRESSURE TRANSDUCERS. SELECT A

TRANSDUCER WITH HIGHFEST SENSITIVITY WITH SUITABLE OVERRANGE CAPABILITY.




RANGING
TYPICAL CHARGE MODE iCP PSi PRESSURE SENSOR
LINEAR DYNAMIC RANGE 0 - 10,000 psi

RANGED AS AN ICP VOLTAGE MODE SENSOR

(Cpen circuit voltage sensitivity 50 mV/psi)

| svFs T 1ovFs
SENSITIVITY | RANGE RANGE
e .
50 mV:ps : 0 - 100 psi 0 - 200 psi
{’; 0 mVpsi 0- 500 psi 0 1000 psi
CAPACITOR AT INPUT j & mVpsi , 0 - 1000 psi | 0 - 2000 psi
OF ICATTENUATES: ) 3
SIGMNAL & INCREASES ; I mV.psi | 0 - 5000 psi 0 - 10,000 psi
RANGE | _
\ 5 MVipsi _ 9-10000psi | -

BIAS YCLTAGE OF BUILT-I" IC AND POWER SUPPLY AND
VOLTACE tzV=L OoeTe RMINES 5 OR 10V RANGE CAPABILITY

12V BiAS 18V PCWER = SV RANGE
1 BiAL 2aY AONNER - 10V RANGE




6. MODELING:

COMPUTER MODELING IN THE FORM OF FINITE ELEMENT ANALYSIS, PERFORMED
PRIOR TO EXPERIMENTAL TESTING, PROVIDES INSIGHT INTO THE PERFORMANCE

CHARACTERISTICS OF THE TEST STRUCTURE.

IT IS EQUALLY IMPORTANT, WHENEVER POSSIBLE, TO SET UP AND MEASURE

PERFORMANCE CHARACTERISTICS OF A BEHAVIOR MODEL OF THE TEST STRUCTURE.

SEE ILLUSTRATION OF COMMON BEHAVIOR MODELS




TYPICAL EXAMPLES
OF BEHAVIOR MODELS

SHOCK TUBE GUN TUBE
(helium driven) 22 CALIBER

“{if?

i

DYNAMIC CALI2ZRATICN AND FREQUENCY .
RESPONSE TESTING OF TRANSDUCER. CHECK OUT BLAST TRANSDUCERS

PLEXIGLAS DROP SHOCK MACHINE StAALL COMPREESOR

|

iy —~_ .
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| I 1
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B | | e v
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CHECK QLT ACCELEHATION sHOUK

SENSURS GHANGEMATEASL 1 PROVIDES REPEATABLE OSCILLATING
”."?pf\\._ T [:r\““j _:) Al [’_I\\':l | b -‘[:Il AP.EJ pI,'_'SSLlF)'E SOL'F‘{(:E
FRECUENCY i

.‘_}I‘L.";"\l i ‘":;’\\[I:’_ﬂ"[-i = ‘N

ST BARNiL |

OTHER MODEL IDEAS:

|
j GMALL ONE CYL ENG. — COMBUSTION

MOLEL SO N ROCYET  — THRUST

LSO S — FREE FIELD
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MEASUREMENT OF THE KNOWN PERFORMANCE
CHARACTERISTICS OF A BEHAVIOR MODEL PROVIDES FOR:

- FAMILIARIZATION & CHECKOUT OF INSTRUMENTATION IN
A CONTROLLED ENVIRONMENT WITH LITTLE RISK OF

DAMAGE TO EQUIPMENT

« SYSTEM CHECKOUT -- YOU KNOW INPUT AND DESIRED
RESULTS FROM BEHAVIOR MODEL

* TRAINING OF NEW PERSONNEL IN MEASUREMENT
APPLICATION

- TROUBLE SHOOTING -- TESTING OF QUESTIONABLE
INSTRUMENTS IN BEHAVIOR MODEL

- BETTER ASSURANCE OF SUCCESSFUL MEASUREMENT
(ESPECIALLY IMPORTANT IN COSTLY 1-SHOT TEST)
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DISCHARGE _TIME CONSTANT

DEFINITION: DISCHARGE TIME CGNSTANT (DTC)- TIME REQUIRED FOR A
TRANSDUCKY OR mEASURING SYSTEM TO DISCHARGE ITS SIGNAL
TO 373 0¥ THE CRIGINAL VALUE FRUM A STEP CHANGE OF
MEASUREAND. DISCHARGE TIME CONSTANT DIRECTLY RELATES 71O
THE 10%W FMREQUYENCY MEASURING CAPABILITY FOR BOTH
TRANSIENT AMD SINUSOIDAIL EVENTS. (DTC SHOULD NOT BE
CONFUSED WITH RISE TIME WHICH RELATES TO HIGH FREQUENCY

RESPONSEE. j

DISCHARGE TIME CONSTANY TS SOMETIMES CONFUSED WITH "RISE TIME™. AS
NOTED ABOVE, DTC DEFINES IOW FREQUFNCY RESPONSE. A RECENT CALLER WHO
WANTED TO MARKE A PAST RESPONSCL SUOCK WAVE MEASUREMENT, LOADED THE SCOPE
INPUT WITH A 50 OHM RESISTOR TO "SHGRTEN THE TIME CONSTANT"™ UNDER THE

ASSUMPTICN I'T WOULD INCREASE THY PISE TIME.

THIS CONFUSION MAY AKRISE FLRCM THE DEIIRTTION OF "TIME CONSTANT" TAKEN

FROM THE RLECTRONL{® DICTICNARY, MYGKAW-HIII, 1978 WHICH READS:

PTIME CONSTANT 1S 'TW:¥ TiME REQUIRED FOR A VOLTAGE OR
CURFENT TN A CIRCUIT PC RISE TO APPROXIMATELY 63% OF
ITS STFADY STATE F1HAL VALUE ———-- QR FALL TO
APPROXI(MATELY 37% OF 1'T'S INITIAL VALUE.

DISCHARGE TIiME CONSTAMTS ASSOCIATED WITH ICP INSTRUMENTS INCLUDE:

THE TRANSDUCER DTC WHTCH IS LIOTED ON THE SPECIFICATION SHEET, AND THE
AC COUPLED POWER UNIT WiliChH DECOUPLES THE BIAS VOLTAGE RIDTNG ON THE

TRANSDUCER SIGNAL LEAD. A

i

|




WITH CAPACITIVE BIAS DECOUPLING, THE CAPACITOR AND THE INPUT IMPEDANCE
OF THE READOUT INSTRUMENT ESTABLISHES A HIGH PASS FILTER WHICH

DETERMINES THE LOW FREQUENCY RESPONSE.

POWER UNITS ARE ALSO AVATLABLE WITH ACTIVE OP-AMP BIAS DECOUPLING
CIRCUITS WHICH PROVIDE A ZERO BASED LOW IMPEDANCE OUTPUT. THIS TYPE OF
POWER UNIT MAINTAINS THE TRANSDUCER DISCHARGE TIME CONSTANT INTO ANY
READOUT LOAD IMPEDANCE. IT IS ESPECIALLY USEFUL WHEN COUPLING INTO

TAPE RECORDERS WHICH HAVE INPUT IMPEDANCE AS LOW AS 20K.

DISCHARGE TIME CONSTANT AND OTHER TECHNICAL INFORMATION IS DESCRIBED IN

MORE DETAIL IN OUR TAN COLORED “GENERAL GUIDE TO ICP INSTRUMENTATION".
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APPLICATIONM FNGINEERING SUGGESTIONS TO_ HELP SMOOTH OUT

THE MEASLUREMENT PROCESS

DIGITAL FEAK METER.

WHEN RECORUDINC MEASURKMENT DATH WITH A FIGITAL PEAK HOLDING METER,

MONITOR THE INPUT wWAVE FORM WITH A SCOPE. OTHERWISE YOU COULD BE

MONITORING HOISE VROM A I.Q0OSE CONNECTION OR DISTORTED TRACE FROM POOR

SENSOR INSTRALIA{TON.

TRANSDUCERS WITH LONG DISCIIARGE TIME CONSTANTS:

MAY TAKE LONGER TO TURN ON. MOST PCB UNITS HAVE A CCOLOR CODED METER
THAT MONITORS THE TURN ON (BIAS VOLTAGE) OF THE SENSOR. ALLOW A FEW
MINUTES AFITER TURNING POWER UNIT ON TO SEE IF THE METER POINTER SWINGS

TNTO THE "GRELHT OGTON TNDICATING PROPER TURN ON.

REPAIR SERVIUE:

WHEN RETOURNING AN fEM For SW<VICE, ATTACH A TAG TO THE ITEM GIVING
GETRAILS OF THE vLOT e ALSC COMMUNICATE WHEN YOU FEEL THE ITEM HAS
NOY PROVIDED GCOD Skuvici Lirk- 11115 INFORMATION IS VALUABLE WHEN BA~XING
WARRANTY ANTUSTMENTS YROVIDE R MAME AND TELEPHONE NUMBER SO YOU CAN

BE CALTL} TY HLEDFD

ORDER SPAKE (Al ES:

CABLLS Axy TiMopr"ild TrttufN, Bl A - HHE WEAKEST ELEMENT IN THE
MEASUREMENT SYSTHH. i YOU DON"Y MAKE YOUR OWN CABLES OR MAINTAIN A
STOCK, OKDER SPARE CABLES. CABLES WILL LAST LONGER IF THEY ARE TAPED

OR TIED DOWN T RELIFEVE STRELSES AT THE SENSOR CONNECTOR.




TRANSDUCER INSTALLATION

THE IMPORTANCE OF DETAILED ATTENTION TO SENSOR INSTALLATION CANNOT BE
OVEREMPHASIZED. PROBABLY NO OTHER SINGLE FACTOR HAS AS MUCH EFFECT ON
THE QUALITY OF YOUR MEASUREMENT DATA. POOR INSTALLATIONS USUALLY

OVERSTRESS SENSOR HOUSINGS AND DISTORTED DATA. THE SOLUTION TO A POOR

SEAL SURFACE IS NOT MORE TORQUE.

SEE ILLUSTRATION: SEE PRESSURE SENSOR INSTL. & FORCE SENSOR

MOUNTING

MOST MANUFACTURERS PROVIDE DETAILED MACHINING INSTRUCTIONS, SURFACE
PREPARATION, AND RECOMMENDED MOUNTING TORQUE FOR THEIR PRODUCTS. IF

YOU DIDN'T GET THIS INFORMATION WITH YOUR PRODUCT, REQUEST IT.
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COMMUNICATIONS:

WHEN CALLING IN FOR APPLICATION ASSISTANCE, PROVIDE AS MUCH DETAIL AS
YOU CAN. A BRIFEF DESCRIPTION OF YOUR APPLICATION, APPROXIMATE RANGE,
FREQUENCY RESPONSE UNUSUAL ENVIRONMENTAIL CONDITIONS, AND WHETHER IT IS

A TEST OR CONTINUQOUS MONITORING IS IMPORTANT.

EG: QUESTION: WILL YOUR TRANSDUCER OPERATE AT 1200°F?

ANSWER: YES AND NO, IT DEPENDS ON A LOT OF OTHER FACTORS.

BETTER QUESTION: DO YOU HAVE A SENSOR THAT WILL MEASURE LOW PRESSURE
EXHAUST PRESSURE PULSATIONS IN A DIESEL ENGINE AT 1200°F?

ANSWER: YES, MODEL 112A21 50 mV/PSI ACCELERATION COMPENSATED
TRANSDUCER MOUNTED IN THE MODEL 64 WATER COOLED ADAPTOR OPERATES
VERY WELL FOR YOUR APPLICATION. THEY ARE DESCRIBED ON PAGES 13
AND 26 IN THE CATALOG. ARE THERE ANY OTHER UNUEUAL ABOUT THIS

APPLICATTION.

WHEN CALLING ABOUT EQUIPMENT PROBLEMS OR OPERATION.

1.) HAVE MODEL NUMBERS OF SENSORS AND SIGNAL CONDITIONERS.

2.) HAVE CATAILOG AND MANUAL IF YOU CAN IOCATE IT AT HAND.
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WHAT DOES SHORT-TERM STATIC RESPONSE MEAN?

YOU MAY SEF REFERENCE IN THE LITERATURE TO THE EFFECT THAT A SEN:SOR MAY
HAVE "SHORT—-TERM"™ STATIC RESPONSIL AND IS SUITED FOR "QUASI-STATIC"™

MEASUREMENTS.

THE USE OF SUCH "nDEFINED TERMINOLOGY IS PURPOSELY VTISED 10 1LLICIT
CUSTOMER QUESTIONS ON WHAT IS MEANT BY %"SHORT-TERM" AND TO OBTAIN
MEASUREMENT DETAILS NECESSARY TO DETERMINE IF THE SENSOR IS SUITABLE
FOR THE APPLICATION. KEEP IN MIND THAT MANY QUARTZ SENSORS HAVE
EXTENDED DISCHARGE TIME CONSTANTS IONG ENROUGH TO PERMIT STATIC
CALIBRATION. IN SOME CUSTOMFR APPLICATIONS REQUIRING MNEAR STATIC
RESPONSE, CERTAIN CHARACTFRISTICS OF THE QUARTZ SENSOR MAY BE HIGHLY

DESTRABLE.

SUCH DESIRABLE CHARACTERISTICS MAY INCLUDE:
HIGH ST1FFNESS
SMALI, SIZE COMBINEDR WITH HIGH RANGE
HIGH VOLTAGE OUTPUT

RUGGEDNESS AWD 1LONG LIFE IMPARTED BY SOLID STATE DESIGN

HHOW LONG A QUARTZ TRANSDUCER WILL MEASURE A STATIC FVENT IS DETERMINED

BY SEVERAIL VARIABLES, INCLUDING:

DOISCHARGE TIME CONSTANT OF THE SENSOR AND

THERMAIL AND OTIER ENVIRONMENTAL CONDITIONS




DURING THE APPLICATION DISCUSSION, THE TIME DURATION OF THE MEASUREMENT
EVENT IS DETERMINED RELATIVE TO THE DTC, TEMPERATURE VARTABLES AND
OTHER ENVIRONMENTAL CONSIDERATIONS. WITH THIS INFORMATION, 1HE
APPLICATION ENGINEER CAN DETERMINE IF THE SENSOR IS SUITABLE FOR THE

CUSTOMERS APPLICATION.

OFTEN, WHAT IS5 "STATIC™ AND WHAT IS "DYNAMIC™ IS IN THE EYES OF THE

BEHOLDER.

A TECHNICAL REPORT RFFERS TO A TEST RUN TIME OF 1.5 TO 6 MILLISEC WHICH

IS ENOUGH TO ACHIEVE "STEADY STATIC CONDITIOWS™.

"ANOTHER CUSTOMER ADVYSES HIS PRESSURE APPLICATION IS DYNAMIC-—-"IT

CHANGES T1TWICE A DAY".
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B1AS VOLTAGE

AN OUZPUT OFFSET VOLTAGE, COMMONLY REFERRED TO AS "BIAS™ OR "TURN-ON"
VOLTAGE, IS A NATURAL CHARACTERISTIC OF FIELD EFFECT TRANSISTORS USED

IN ICP SENSORS WHEN POWERLD FROM A CONSTANT CURRENT POWER SCURCE.

IN AN ICP SENSOR INCORPORATING A TWC WIRE SYSTEM; THE SIGNAI, RIDES ON
TOP OF THE DC BIAS VOLTAGE. THIS DC VOLYTAGE IS RENMOVED IN THE POWER
UNIT BY MEANS OF A CAPACITIVE BIAS DECOUPLING CIRCUIT OR AN ACTIVE OP-

AMP CIRCUIT.

MONITORING THE DC BIAS VOLTAGE WITH A METER CIRCUIT IN 1HE POWER UNIT,
INDICATES NORMAL OFR FAULTY SYSTEM OPERATION. THE COLOR CODED READOUT

METER, OR LED, INDICATES NORM+L OR FAULTY OPERATION.

ICP SENSORS ARE AVAILABLE WITH BIAS VOLTAGE IN THE 3 TO 5 VOLT AND 10

T0 12 VOLT RANGE.

BY ORIENTING THE CRYSTALS IN THE SENSOR TO PROVIDE EITHER PLUS OR MINUS
OUTPUT POLARITY AND CHOOSING EITHER A ILOW OR T!IGH BIAS ELECTRONICS, ICP

SENSORS CAN BE PROVIDED TO OPERATE FROM VIRTUALLY ANY SUPPLY VOLTAGE.

SEE ILLUSTRATION-TYPICAI, 2 WIRE 1CP? SYSTEM
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ZERO SHIFT

THERE ARE SEVERAL CAUSES OF ZERO SHIFT, AND APPARENT ZERO SHIFT.
POTENTIAL CAUSES OF ZERO SHIFT AND THE CONDITIONS WHERE IT IS LIKELY TO

OCCUR ARE ILLUSTRATED.

SEE ILLUSTRATION-ZERO SHIFT
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ZERO SHIFT
ﬂ

[ﬂ
.

MEASUREMENT CONDITIONS
LIKELY TO PRODUCE ZERO SHIFT:

ZERO SHIFT CAUSES:

Sensor design or quality High frequency metal-to-metal impact

Mounting stress on sensor Non-precision mounting surface or
port overtorquing

Transient thermal effect Flash temperature associated with
shock or blast waves-no thermal
aplative

Short discharge time constant Longer duration half-sine or nuclear

simulation events

Uneven loading Edge or side loading of sensor
Non-symetrical filtering High frequency, heavily-filtered data
Spurious electrical inputs EMI, RF or electrically actuated events
Erratlic connection; open High shock environment
circuits
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RECOGNIZING ERRATIC CONNECTION

SEE ILLUSTRATION-THE MICRODOT CONNECTOR

ON MANY SENSORS USING MICRODOT CONNECTORS, THE GROUND CONNECTION PASSES

THROUGH THE FLOATING THREADED CONNECTOR.

IF THE CONNECTOR LOOSENS DURING A MEASUREMENT CAUSING AN INTERMITTENT
OPEN CIRCUIT, IT CAN ACT LIKE A SWITCH. IN ICP TRANSDUCERS, THE SIGNAL
WILL GO TO THE SUPPLY VOLTAGE AND SHOW FULL SCALE SPIKES AS

ILLUSTRATED.

SEE ILLUSTRATION-SOLDER CONNECTOR

THE SOLDER CONNECTOR ADAPTOR, RECOMMENDED ESPECIALLY FOR HIGH SHOCK
APPLICATIONS, IS OF ONE PIECE DESIGN, AND MAKES A MORE POSITIVE GROUND

CONNECTION.
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THE MICRODOT CONNECTOR
AN ELECTRICAL SWITCH?

FLOATING CONTACT MUST BE MADE
NUT AT THIS INTERFACE TO
\ PREVENT OPEN CIRCUIT

SHIELD
’/ GND

& SIGNAL/

i POWER

S, | I | (N . .

[ ol R NS O A b
| |
| |

ERRATIC CONNECTION USUALLY PRODUCES

FULL SCALE SPIKES 155




SIG/PWR

M) e
FUSED
\

GLASS/METAL
FEEDTHRU ~

GND
070A09
10-32 SOLDER CONNECTOR
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COmrL.EX SYSTEMS

SEE ILLUSTRATION-COMPLEX SYSTEM

THIS ILLUSTRATION IS NOT NECESSARILY THE APPLICATION ENGINEERS
PERCEPTION OF YOUR DATA ACQUISITION SYSTEM. HOWEVER, IT IS NOT UNUSUAL
FOR THE APPLICATION ENGINEER TO BE ASKED TO INTERPRET THE OUTPUT DATA

AFTER IT HAD BEEN RATHER EXTENSIVELY CONDITIONED.

AFTER PURSUING POSSIBLE SENSOR INSTRUMENTATION PROBLEMS INCLUDING
GROUND LOOPs, CABLE INTEGRITY, AND OTHER ENVIRONMENTAL CONDITIONS, HE

WILL MOST LIKELY SUGGEST:

1. LOOKING AT THE INPUT ON A REAL TIME BASIS TO DETERMINE

IF THE INPUT IS GOOD OR

SEE ILLUSTRATION-492A SENSOR SIMULATOR

2. TO PROVIDE A KNOWN INPUT TEST SIGNAL DISCONNECT THE
SENSOR AND APPLY A KNOWN TEST SIGNAL FROM THE 492A SENSOR
SIMULATOR. THE 492A PROVIDES A 100 Hz SQUARE OR SINE WAVE

INPUT OF KNOWN AMPLITUDE.

ONCE YOU HAVE DETERMINED THAT THE INPUT SIGNAL LOOKS GOOD, THEN IT MAY

BE A JOB FOR A SYSTEMS ANALYST!
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SENSOR SIMULATOR
Model 4928B
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WHILE DYNAMIC MEASUREMENTS MIGHT STILL BE SELDOM ROUTINE, THEY ARE
BECOMING MORE AND MORE ROUTINE. INCORPORATION OF BUILT-IN

MICROELECTRONICS HAS IMPROVED PERFORMANCE, STMPLIFIED OPERATION AND
MADE SENSORS MORE TOLERANT OF ADVERSE ENVIRONMENTS. 1IN ADDITION TO

GREATLY REDUCING THE PER CHANNEL COST.
TODAY, ICP TYPE SENSORS ARE USED EXTENSIVELY AND SUCCESSFULLY FOR
UNATTENDED CONTINUQUS MONITORING OF DYNAMIC PHENOMENA ON MACHINERY AND

STRUCTURES IN TOUGH FACTORY, FIELD, AND UNDERWATER ENVIRONMENTS.

WHEN YOU GET INVOLVED WITH THAT "UNUSUAL APPLICATION"™, SEEK APPLICATION

ENGINEERING SUPPORT — DON'T USE THE "DART BOARD"™ APPROACH.

SEE ILLUSTRATION-DART BOARD
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SESSION 4

DATA ACQUISITION
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Resistive Classical Thin Film Std Cell
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changes as 1t 1s elongated and a plat- Time to Production  10-12mo  5-6 mo 7-9 mo

focm for attaching this <ensing elenent

tafter design concept)
te the surface to be measured. The En P

chan<ie 1n resistance 1s small and 1is Production Unit Cost
uswally convertel to a voltage by making Qty. 100 High Med Med+
the <ensing element a leg 1n a "bridge” 1000 High Med- Med
f1reult, 1000+ Low Med- Med-
Py e IS A S Co=t of Revision

Breadboard Low Low Low
This transducer 1s simllar to the resis- Proto Med Low High
tive type, except the sensing element 1S Time for Revision 3.4 mo 1-2 wk 1:2.mo

2 plezoresistive material.

Interfarce

Although the investigation has not been
that rigolous or exhaustive (based enly
on budgetary vendor and engineering
estimates for an assumed circuit
camplexity', the indication 1s that a
thin film approach has the advantage of

The output signal of the basic trans-
Aucears 7an be sensed directly, but 1in
some applications the signal levels are
lav and even with care 1n transmission
the siunal 15 not much ureater than the

vt he - + s et P
?gxse. ?”f”d’fe 'dses,'re dgshinrz we the earlliest results with the least cost
ylifie n st b sho o )
ChE ampld 1'“;1'“ ay lJe": L " " for the anticipated i1nitial quantities,
Bt ; A le =17 < e - o 22 2 =
LREHEEL @ Al 't”l'”a b; & '3P2C1 Ang The low cost and faster turnaround of
n- cl1stance o
and ;e“l“t?néf b ;he L;fnettoitngl revision i1s also attractive for a
emate AamD 18r alse o2 il
Lehale ARDA L 4 a T 3 development pr.je-t. The classical
gquality and limit the use of rthe sensed _ S .
B 24F A . 5 appruach has the best chance of reaching
4t 3. Fpecral rtransmission techniauves
the rinal chip size goal and may be

atd dpterfae srdwvare have bsaen
i i ', & Rt e ultimately necessary for the production
lryalops to compen<ate for rhe problems cliipe

11ps.

tuhevent 14 Jdara acgursition from these
t1anisdure F¥a 5 e pEE .
= B DESIGN AFFROACH

4 —— o : 5 5
A u}fh moast Sepgars, the basic elements SusvER Consdel IEToNS
are 1imir=d 1n rheir range of output and

are sencitlye re changes 1n temperaturs, Before
Humidiry «nd pre~sure. These character-
18817 a~re utunally addressed through

rn st units designed for a
UL appluicration and environment,

detall desiun of the microchiyp
~att hea1n Some Juestions MuUst e
answurred anld seme triade-ofts made
cpePrnint the cperation 2f rihe
trarslucer in a4 data a-gquisiticon system.
The areas aldressed 1nvolve the
imterface, proressing  testina. and

T o ipen . o
FASRICATION TECHNOLOGY Transdurcer Interface

The poszitrla nse f alternate tachnolo-
1#g ameade o ha r=idlersd st the
Basinning of Las» gia1éect, since thae

One of the goals cf the prolect 1s t2
develnp a practical ftransducer interfa-e
that will ke common to many tvpes of
sensing elements. (The connection to the
cansing element will be unique to the
17put and made at the time of 1nstal
lation 1n 3 transducer).

frn4l 1mplementation 1< limited hv the
qval labi ity of components or use of
lefin= 1 "vilding nwloacks and, therefore,
the Adesion Le~rmes a tunction of these
fastzre 1n addition to th: Aesired

almance specifrcarions, T

To be fully functicrnal the microchip
will reguire an 1nterface module that
supplies power. provides a path and
canditioning {0p prearammipng data,
tecelves transducer AT and test si1anals,
and Apives recarding and analvsis
“oulpment

Freliminaiy investigations intn avail-
able alteinatijves 1t "he ~lasgical
iEpccach 2 ~hip fabiication have

tesulted 1n the toilewing compatlsons.

2i6




& guestion that has or oeern Lued at
this paiat 1s 1f Tthere 12 a oeedi Lo pro-
vide ai interiace to e SLin: instalias

interactive
arlion for

tions -uith the lnss of anvy
functions and with a modifi-
added peoweg

The coemmirn 2urtput "ne e TN . SUETAY
pated o pe o3 grantar Lre
TNAX1AL transmissyien 1.08
trtacfarce w i dog vl
lat yor = ([ - Ao & H
AL NS gl e 2 invterna.
Botrer et ieg Sy reqoel enTs

Foe - e i

me 1 tesseiny ful Ly
letinerd Laged on e ne

G oeeahite matoening, ain
3 - diffapormyan: on o Qthers
LE gL Ee mere angly g a ¢ ~red Vet
jensrals A thedd Jaid i AT ST i
e L vgvansdgrsg SRR Ppreet -
3 s S | AR nveel .5 RATICIRE W S
- L AR

. Laras o RO e

I 5 # T He

1t r 1 4 ! £ . - e I i

i & ! -

Alwdid o [T S . £ o pefe,
T t - LA i o o Yy ey -=

1 . Lol Y Plael L =
ol i i I *he b £ 3 %

£ related to a programmabl
toe mplexity ~f the
i Larddaie and 1ts use. [t 18
hat thes mircchip Wwill be pre-
ur uah the rransducer mmor,
A sty an RE-232 connertlon 19
a T shedy Funo ns will 2 EIL
ir i e AT ¥ an
I8 RS ry . the sntl
5 HER ot AL
WICRSTHIF SUNTTIANE
e
dat s
ab L=
ey
d
ner
i1te;
1 g rer
x o Frods tata is
Ié Cete ok Tant el Les *ianhs
[ e e paniy LEE 1] bl e
The 11 3 LellsLICS ¥ 2ach ul K ar=
TS Boensar. THrat Inielves
from glecaels imilT sencsiniv
inu o2 e~ i
oveEBY ant Latie
R PRTs L 4
Aith.ooval piresert ddevy s Loawe
LATHR L TanqeE Thiy Ay negrn done ot
4:h1eve Lhe largest sianal ¢ Y
+4t17 4t rthe s. urce This wi1ll
uecessary with the oles NLTE
2aSing element
TEA nnur 15 at
fhls =taue » B
% vl o Hw 13 =
1,'\ -
a7l e g U o -
- 1ied lLetoare the first
23
e TulSor BUt - ra-~e1ivas
bridge type Slrain gages
eIty Ervm . Ty 20 amnevRG
3 JESIStance i Lhe pangs oF
{4 E 4 Sy me At CAR 1 . R W hE Wl S0
tiye 1 Input, ~ed range 1=
sakl the ejectr iy ms at the seps
Lt lemert .V B ¢cuy tosSQur-e st ol
Faar H riLe may = fee trr cwaele d
Taupet Yejest Lasmvsty LT e
vESh e ¥ rrne f
| B S a hiale 0o S T R i
s A g oy 24k e 3 A % 4
1th o4 tahle 310 1 J
Nobep 4 Ve pra + th 3

L




- c

s2lectalls 3dB peoint at 0.5, 2. S, or 1} Test - deperates tast excitation
12K Hz. The rollrff of the low , ass signals arnd evaluates responses, and
filter may be selectable to accom-odate generates serial output data. The test
4 smooth tailering of compensation “or data 1s selectable bty external command
crystal resonance and therefore, ext.nd- and could include a status code with
1ny the transducer bandwidth. A byvpass summary operating ronditions, a pulse
selectisn 2f either or both filter train of variable length and frequency,
SerI1ans LF also posfsible. and an ID -ode (an ASCII pulse train
wlth rhe model, transducer type, and
i Sain - selecticns of xl, %198, x1@0 lecatinon ~oded) .
in*rease or decrease 1n signal ampli-
tnde. Rutomatiz gain contral conld be 3+ Zontrel - decodes commands and sets
auplied, but this would reguire an indi- conditions to control operation.
carion to the data acgulsition eguipment Commanded operatimsns include:
sf the magnitude of the new gain factor - 1nput new stored data.
and art what poilat the chanye occurred. - transmit ID raode,
- transmit pulce train of “n”
f: InrtagratesDifferentiate - one or two pulses at "m" freguency,
ctages of 1nteqgration or differentiation - perform test,
:f the filtered sgiunal 1s selectable. - perform calibrate.
4' Output Select/Drive - an analeg The cutput will remain in the sensor
selacpiyn petueen rhe sensed s1aqnal and s1q0al condition until a ecommand 1s
ree test data. The output 15 a low 1lmpe- received.
tance caklae ddrive. The selecticon 18 made
anocommard from the Iatevrface Nodule,
ny Frwer - geperates the voltite levels
nesadad for chaip operatisn snd sensor
r1a%. Thanyes in poouc: levels are censed
r initiate contral asnions
o £S F3 FS
e INTEGRATE
FILTER [ - -
. san DIFFERENTIATE
QUTRUT
SELECT
DRIVE
MONITOR POINTS
‘ TEST SIGNAL
! =, I
: | !
~O0e
::"') :} IJ(}Dh : TE:‘,T
1 CUTRUT
‘ SELECT
GENERATE
TEST. OuUTPUT
IN QUT
-—
BROGHAM CONTROL
MEMORY S
ADDRESS 1 1 T
START
POWLR
5
INTERFACE
MODULE

FIGURE A

MULTIFUNCTION TRANSDUCER MICROCHIP BLOCK DIAGRAM

=




SUMHARY
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A COMPUTER PROGRAMMABLE TRANSDUCER MICRO CIRCUIT

Q: Steve Baker (Oakridge National Laboratories): I notice that you
have several chips on board rignt now in the hybrid state and you are
finally going to have one chip. Where do you get the power for this
chip? Does it come down the line?

A: Kenneth Appley: Right, down the line, over the same two wires.
This is standard row. That is not new technology. The power is being
supplied and the sense signal comes back over the same lines.

Q: Steve Baker: Just one or two gquestions about performance. What's
the resolution in terms of bits of your signal? Is it going to be
like a 12-bit signal coming out?

A: Kenneth Appley: We are still working on that. My first calcula-
tion showed that it is probably going to be at least that. Now this
is an analog signal coming down the line. There is no A to D con-
verter in it. That is about the resolution that we are going to need.
We are not sampling so we don't have all of those problems right now.

Q: Pat Walter (Sandia National Labs): Acceleration signals by defini-
tion in nature are typically wild. What logic are you putting into
gain changing? What is the criteria to autorange it? The double
differentiation is really a tough problem, especially if there is any
noise present at all. Any comments on that?

A: Kenneth Appley: On the first question, we don't think that ac-

celerometer signals are that wild. We are not trying to assume how
this thing would be used or what your environment is. Everything is
programmable. We are putting in capabilities to do things and it 1is
up to the user to decide what he wants to do and when. The capakility
will be there to program gain selections of 1, 10, and 100. So 1if you
find that the things are too high, or that your signals are getting
clipped, at that point you can change the gain. It is not an
autoranging. Autoranging is a tough thing to do, especially in a test
envircnment. I1f this device arbitrarily goes out and changes the gain

for you, I don't think that you are going to be very happy unless it
does two other things: it tells you when it did it, and it tells you
Fy how much it d4id it. Now those two things are a little more than we
want to bite off right now to fit into the data stream. “his 1s not
an autoranging device. The whole thing 1is set up as a programmable
device. Some of the programming is done at the factory. Some of the
programming 1s to be done as the device is installed, and then others
in on-line programming. The gain change and frequency response, those
are things we feel that you wouid probably want to do installed. In
other words, you do not want to take the accelerometer or the
transducer out and put it on a programmer. That is why one of the
program paths is through the interfaces. It is there all of the time.
All you have to do in interrupt the data flow. You Jdou that before or
after the test. Now, on your other question about double differentia-
tion, we don't kncw what we are going to do with that second stage of
differentiaticen. It 1s talking about disappearing unless somebody
here can reaily see a need for it. The double integration 1s ob-
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viously necessary. The first stage of differentiation is good but, we
don't know what the noise environment is going to be and double dif-
ferentiation surely wouldn't help that.

Q: Steve Kuehn (Sandia National Labs): Exactly what does your cell
test scheme encompass? Are you verifying that the crystals are ac-
tually working, or are you just putting a signal in after the crystal
input or what?

A: Kenneth Appley: Right. There's two techniques th t we have used
already for accelerometers. In both techniques, the signal goes
through the crystal. We are actually injecting it into the crystal.
That means that any acccleration vou have during the time of the test
is going to foul up that test data a little bit. That is under the
user's control. You have got to be careful when you are doing some of
these things. If you want to verify that your primary sensor is work-
ing, it can't be doing cther things at the same time and that is ob-
vious. That is the only thing that you sacrifice, but we are inject-
ing the signal directly through the crystal and then evaluating this
on the other side. We have the capability of running this pulse train
through the crystal, too. There 1s some thought that by analysis of a
square wave signal coming back you may be able to determine frequency
responses, so that is why the square wave is in there: for your selec-
tion to set the pulse train and the pulse width. It may be very use-
ful in testing to have to know that you have started with a controlled
square wave, and see what happens as it comes through your whole sys-
tem.

Q: Leroy Bates (NSWSES): Are you designing this for a specific ap-
plication or as a general purpose?

A: Kenneth Appley: No, it's a general purpose. Like I said we are
trying not to make as many judgments on how 1t's going to be used. It
is all programmable. We are making judgments on the extent of the
program. Like I showed in the one slide depending on how many itera-
tions we have to do around the trade-off loop, trading off the size as
to the functionality, 1like the second differentiation if it doesn't
give us enough function, if it really not that useful and it is taking
up a lot of real estate, that 1s one of the tradeoffs that you would
make.

Q: Steve Baker {(Oakridge National Labs): You haven't talked any about
what happens at the PC end, or how you get the data on and off. Have
you worked any on that end of it, and if so, what are you planning on
providing?

A: Kenneth Appley: On the PZ end? We have looked at the protocol
and the data transfer, and I have some thoughts on how I am going to
do that. It is not going to be very complex. It is not going to re-
quire a big software package. It is a standard RS232 interface to
send over some ASCII characters. The device will interpret those AC-
SII characters and set up the system to do that. There will be a min-
imum of a two-wcrd transfer the way it looks right now, maybe up to as
many as a 10- to 15-wecrd transfer to do different things. Another
function that we are going tec include 1is temperature compensation.
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The sensitivity of crystals in the accelerometer changes with tempera-
ture. There will be a sensor on board to sense the temperature and
make adjustments in the output as a result of temperature changes.

Q: Larry Rambert (Allison Gas Turbines): Have you given some thought
to the time between selecting accelerometers? In other words, if you
are in a multiplexing system you have to address each one of these
things to give you a signal back. Your simultaneity of data is going
to be some what degraded, I would think.

A: Kenneth Appley: In the initial stages, we are proposing one inter-

face module for the chip. As far as the multiplexing scheme, it 1is
very easy just to multiplex the modules. But that 1is a system con-
sideration, and has to be of a concern. I haven't calculated loop-

time specifically, the time you trigger it until the time you get a
response, but it is going to be in the millisecond range. I know that
if you are looking at 500 devices, that could be a long time. But
that comes down toc the system design. In other words, you could set
it up so these were addressed in parallel and intermediate memory is
there to handle that, or you can just take time off-line and talk to
them all. It 1s completely under your control when the tests are done
and when all of the communications are done.

Editors Note: Dick Talmadge: I think that there might be a miscon-
ception as to what role the PC plays in this system. The microcircuit
in a normal measurement mode 1s transparent to the operation of the
transducer. The PC 1is used to program the function of the transducer
(filter characteristics, integration, - rentiation, etc.) and 1is
normally done on the bench. At that time, the transducer will store
and maintain the functionality and produce an analog data signal out-
put as before. The calibration and self-identification features of
the chip require an interface control in the signal-conditioning sys-
tem to command the responses which are sent over the two-wire data
line as a serial bit stream. The signal conditioning system will have
to include the processing system for this data or it could be recorded
with the data and post processed.
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A REMOTE SENSOR/CABLE IDENTIFILR'

Willam H. Andrews, Jroand Steven P Baker
Development Engineers
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Oak Ridge, TN 37530-6003

ABSTRACT

Errors in ficld wiring can result in sigmiticant correction costs
(i the errors wre discovered prior to usei n crroneous or
unusable data (il the errors are not discovered 1 time), o in
serious accidents (iF the errors corrupt mission-cssential data).
Detailed Dield wiring checkout and rework are tedious and
expensive, but they are essential steps in the quality assurance
process for large, complex instrumentation and control swiems

A recent Oak Ridge  National  Laboratory  (ORNL)
development,  the  remote  sensoricable  dentilicr (RSCH,
automates verilication of held wiring  In the RSCI system, an
dertifier module s installed on or integrated  into cach
component (sensor, actuator, cable, distnbution panel, cte)) w
be varilied.  Interrogator modules, controlled by @ personal
computer (PC), are installed at the connections of the [ield
wiring to the inpuls of the data acquisition and control s
(DACY).  Interrogator madules poll the components conneeted
to each channel of the DACS and are able to deteimine the
path taken by cach channel’s signal 10 or {rom the end device
for that channcl. The system will provide not oaly the 1D code
for the cables and patch pancls in the path o a particular sensor

nleni

or actuator, bu! individual cable conducior 1Ds as well One
version al the  system uses  eneting uignal owires for
communicitions  between RSCLH modules. Anoiher, moere

powerful version requires a dedicated conductor 1in each cable.
Both versions can operaie with or without instrument power
applicd and neither interferes with the normal operation ol the
DACS. ldentilicr modules can provide o variety of information
including status and calibration data.

Detat’s ol this technology, which received a 1987 1R-10
Award, and plans for adapting it to NASA funch pad
applications are discussed.

"Rescarch sponsored by Nationai Acronautics and Space
Administration,  Kennedy Space Center,
Agreement Noo 1926-B035 Al

“Operated by Martin Manetta Encrgy Systems, Inc., lor the
(LS. Department of Encrgy under Contract Neo DE-ACOS
R40R21400.
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INTRODUCTION

As we become inereasingly reliant upon computers and other
intelligent devices 1o control equipment and 10 automate
processes, we als™ increase our dependance on clectronic sensors
and actualors and on interconnecting wiring.  Fortunately, this
trend is accompanicd by a sharpened awareness of the issues of
guality assurance, safety, and reliability.

A DACS  comprises  several  components: the
computer/controller,  sensors and  actuators,  signal
conditioning/multiplexing circuits, and signal transmission media.
Vatious segments of the instrumentation, computer.  and
electronies industrics arc addressing the quality issues relating o
these components.  Redundancy, higher levels of embedded
intelligence, computer-aided engineering tols, on-line sell-testing,
and innovative design techniques are being applied to ensure
quality and to increase reliabihity.

However, the problems ol configuration control and ficld
wiring integrity seem  to have  cluded  such  technicaily
sophisticated approaches.  DACS today can include thousands
of seasors, actuators, intermediate termination points and many
cables consisting of miles of wires.  Conlidence in system
confliguretion depends on the answers (o three basic questions:
What sensor or actuator is actually connected to which channel?
What is the signal path from cach sensor or actuator 1o its
connection at the computer/controller?  What is the integrity of
that path?  These questions arce very important.  Even though
individual DACS components function reliably, the resulting data
cannot be trusted unless interconnecting wiring s verifiably
correct.

EXISTING TECHNOLOGY

The process control industry has begun o address the area
of system coafiguration and integrity in @ somewhat indirect
manncr.  Mulu-drop communication links are available that
simplily the interconnection of - digital - components and
communications standards (c.g. RS5:485 or BitBus) promote
interoperability: by specilving hardware interfaces, data rates,
clectrical characteristics, and joading  factors Commercially
available special-purpose transceivers asaist in implementing many
of these standards. All of these developments provide tools for
attacking conliguation control and wiring integrity problems, but,
clearly. they are insutTicient alone.




For several years, the industry has recognized the shortcomings
of purcly analog signal links to field devices. A new class of
sensors with embedded intelligence is becoming available from
process control equipment manufacturers. Most "smart sensors®
still use traditional 4- to 20-mA analog current-loop signaling, but
high-frequency digital signals can be superimposed  for
communication with hand-held programmers, This technique
limits the use of smart sensors to low-bandwidth DACS. Because
of the proprictary nature and incompatibility of the hardware and
protocols in existing systems, smart sensors have yet 1o gain wide
acceptance.

In response to these incompatibility problems, the ISA SP-50
Commiltee is developing the FieldBus standard.  This standard
will specify signal transmission media, signal levels, and
communication protocols for a multidrop serial digital data link
for communication between field instruments.  Committee
members represent manufacturers, government, and cnd users.
The stundard should be issued for comment by the end of this
year.

PREVIOUS WORK

During the 1970s, the Instrumentation and Controls Division
of ORNL began to realize that an automated system for verifying
the configuration of large research experiments could be
extremely valuable.  As the power of available computers
increased, the size and complexity of the experiments and
processes  that they controlled grew and the number of
paramcters 10 be monitored  and  controlled  swelled
correspondingly.  Systems with several thousand sensors and
acluators were not uncommon, and configuration control became
a major issue.
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In the early 19805, work began on sensor identifier technology,
and, after several approaches had been evaluated, the first
demonstration system was built and tested in 1984, This system
featured a single-board computer that interrogated passive
"dumb” identifier devices via the sensor signal wiring.  This
system was able to provide the identity code of the end device
connected to each channel of a star-wired data acquisition
system.

DESCRIPTION OF RSCI SYSTEM

The RSCI system expands the capabilitics of previous
developments by distributing intelligence to the remote identifier
modules and is intended for retrofitting to existing DACSs or for
integration into new DACSs.

The RSCI system has three basic components as shown in
Fig. 1. A host computer and its resident softwarc provide an
operator interface and maintain the overall system data base.
Intelligent master modules provide the ficld wiring interface and
intermediate storage for configuration data.  Intelligent 1D
modules attached to (or integrated into) cach cable, sensor,
actuator. or other component to be identified respond to
inquirics from their master modules by providing identification,
status, and housckeeping data. The RSCI system operates with
active or idle DACSs and does not interfere with normal DACS
operation.

On power-up. a master module sends an initialize instruction
down a dedicated data line 1o the first module in the serially
connected chain of identifiers.  This ID module responds by
sending its unique ID code back 1o the host and placing itsclf in
“transparent” mode so that subsequent commands from the
master module are passed through. The next initialize command
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reaches the second ID module in the chain, which responds with
its own code and then places itsell in tronsparent mosde. This
process continues until all modules in the "daisv chain® have
identified themselves. Thus the master unit knows not only the
ID codes for all modules connected 1o i, but the order of their
connection as well.

The master module assumes that all 11 moduices have been
polled if a predetermined time increment passes with no response
to the last initialize instruction. Tt then sends an initialization
[+ o 1790 Rl R VRGN S The 1™ LR
take themselves out of transparent mode and baten fur messages
from the master module. It an 1D moduic revenes a message
addressed to the master module or w another 1D module, i
simply retransmits the message in the appropriate direction. If
an ID module receives a message addressed (o ieclf, it checks its
own status or retrieves the required inlormation from memory
and responds accordingly.

When the master module has identificd @i of the 1D modules
connccted to it. it procceds to determine which end device
(sensor or actuator) is connected o cach DACE input/output
(I/O) channcl. To do this. it exates one of the sigeal wires
connected to cach channel with 1 high-irequency pulse train and
then interrogates the end-device ID modules (via the RSCI data
line) to find which ones can deteet the pulses on their signal
lines,

Master modules perform conliguration updates at regular
intervals to detect any changes thit may occur. Upon instruction
by the host computer. the master modules execute “configuration
dumps” or perform other, more speaialized tasks such as fetching
housckeeping information from an 1D module sechecking the
status of a suspect 1D mwdule. oF performing dingnostic tests.

In this manner, the host compuier s able G present system
configuration informauon from the system Gats dase in seveidd
useful formats:

1. A graphical presentation of the system configuration, or a
more detailed description of a specificd subsystem

2. Identification of the end device on any particelin DACS VO
channct

3 The path {including cable and jundiion box 1Ds) o any given
end device

4 A st of all end devices whose data or control signals pass

thiough @« given cable.

ID modales can store other usefu! information such as in-
servive wales, calibration and data, and dosenptive aformation
aboui the type of companent e which the module s atiached.
The end user will determine what "housckeeping” data to include.
If calibration dates are included, for exampic, the user couid
instruct the system to poll all end devices and assemble a st of
all components that will require recalibration in the following
month.

Each moduie contans a microcontroller, @ communications
interlace, and power-cordinoning circuitn. Each 1D module has
a falover switch to aliow necssages from other modulen (o pass
through in the event of a lecal hardware or soltware Inlore (Fig,
2a). Master modules and end-device modsiles have connections
to selected DACS sipnal lines (Fig. 2b1 The sena! data line »
also used to distribute power, thus mimmizang the puber ol
cable conductors that must be dedwated to the RSCT svaem,

In the system under development, cach muster mosdale can
accommodate up to 30 1D modules. Usuaily, one mester module
will he required tor cach trunk eable (o molupaic cable cormying
signals from sceveral sensors).  In smailer systems, the host
communicates with the master modules using standard eral

.
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Fig. RSCI cable ID module.

Fig. 2b. RSCI master module.

ports. In large systems, the host is linked to the master modules
through data concentrators over a commercially available local-
area network (LAN) as shown in Fig. 3.

ID modules are designed around the Motorola 68HCOS high-
speed CMOS microcontroller.  This chip was sclected as the
RSCT module CPU for its (1) low power consumption; (2) built-
in scridl communications interface; (3) large number of digital
/O lincs: and (4) availability with internal PROM, EPROM, or
EEPROM. Another feature of the chip, the high-speed serial
peripheral interface, will be used to add "hot backup” redundancy
to future versions of the RSCI modules.  EEPROM chips are
being used in the carly development stages and will be used for
applicatiins in which licld reconfiguration is desirable.

Modularity and maintainability are being emphasized heavily
in software  development, which is using  state  transition
techniques.  ID module programming is in assembly language
tor speed and code compactness.

Design goals for the RSCI system include:

1. Module cost: less than the cable or end device 1o which the
module is attached.

2. Swe: diameter equal to or less than a trunk cable connector
so that cable ID modules can remain attached to the cables
when they are pulled.
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3. Speed: ten minutes to determine the configuration of a 6000-
component system.

PROJECT SCOPE AND STATUS

The RSCI development effort is being sponsored by the
Lngincering Dircetorate of NASA's Kennedy Space Center for
potential application to the Advanced Launch System (ALS)
Launch Processing System (LPS). This system will be a large,
wvamplex, geographically distributed DACS,; several thousand
wamponents must be included in its configuration  control
program.

This developmient effert i divided into three one-year phases.
The first phase will deliver a system that determines the cable
and sensor coaliguration of a small DACS, thus demonstrating
the validity of the basic soltware, hardware, and communications
protocol designs. The sceond phase is aimed at exploiting the
distributed intelhigence of the RSCI modules by adding the
capability to process a variety of housckeeping data, to identify
vvery cable conductor in the path to every end deviee, and to
detect and locate wiring faulls,  Additional ph.m.' two efforis will
include designing the system data base, developing effective ways
to present the configuration data to operators and o other
computers, and integrating the data concentrators and the LAN
into the overall system.

The final phase will concentrate on miniaturizing RSCI
modules and cnsuring that they meet KSC cnvironmental
requirements. A medium-scale RSCI system with ~ 100 ¢nd-

Large RSCI system architecture.

device modules and ~200 cable modulkes will be delivered in
this phase.  KSC technical involvement in the project is directed
toward using an experl system (o process data generated by the
RSCI system, thus reducing the effort required to analyze the
configurations of large DACSs.

Thus [ar, several prototype RSCI master and 1D modules have
been built and the system's ability to determine the physical
ordering of interconnected modules has been demonstrated.
Efforts arc under way to [it the prototypes to a mock DACS for
a demonstration of the system’s sensor-channel matching
capability.

CONCILUSIONS

The RSCI system offers valuable features not now available
and not promised by new industry standards currently under
development.  Its self-documenting autoconfiguration function
will greatly reduce the manual labor required in cabling checkout,
whether [or troubleshooting or for quality-assurance purposcs.
Records generated by the system are useful for highly reliahle
archival data storage, for post-incident analysis, or for trucking
individual cable or component histories.

This technology has application in many dill *rent industrics--
wherever there is a need to verify the integrity and confliguration
of a system of clectrical devices, active or passive.  Potential
applications 1o tossil and nuclear power plants are under
cvaluation.  Integration of certain RSCI features with the
emerging FieldBus standard will be examined when it is issued.
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A REMOTE SENSOR/CABLE IDENTIFIER

Q: Ray Reed (Sandia National Labs): I think this is really an excit-
ing prospect having a capability like *his. I think anyone who has
been in the field with a large system and a -~mall staff and has any
concept of the need for validating measurements has te appreciate what
you are doing. I had cone question. A number of years ago wh"n we were
in the coal gasification research we fielded large systems with many,
many thermocouples and other sensors as well. I would really have
loved to have a system like this available because we were having to
o .‘I.&u\..r.'.::.J a Sul.. wi L‘..j..in,..l that Yvud aa. - :.A.;in.,q LY aucluliaie. Ciie
of the things that we d3d at that time was te rnote that while most
signal systems, most multliplexers deal with cables pair by pair and
fixed pairing, that in some 1nstances, particularly with regard to
thermocouples and perhaps other sensors as well, you have a number of
validation pcssibilities where you are looking not simply pair by pair

but looking at individual lines paired 1n different ways. For ex-
armplc, vou frequentlv want to measure the isolation of a sensor from
ground or from other senscrs. I am wondering if your system might be

adaptable to multiplexing of the signal lines in various ways?

A: Steve Baker: Ycu mean maybe with separate pairs of signals ccring
into a large system or s~mething? MNot necessarily a cabled system; is
what you are saying?

Q: Ray Reed: Some senscrs can be designed to benefit with multiple
lines; not simply a4 single pair but perhaps 3, 4, or 5 lines. Any
shielded coax, for e¢xample, has three lines and normally you think of
the signal pair, but very often you would like, for validation pur-

poses - and that 1s ona of your concerns - to be able to measure quan-
tities not only between the signal pair but between each individual
signal line and ground. I just mention that would be another augmen-

tation of this system that would amplify your validation possibilities
considerably.

A: Steve Baker: What ! r=ally didn't show when I said that we would
be capacitively coupled tc the signal line or sensor 1is that from a
master 1cdule we can couple to every line going out to a transducer,
be it signal lines, be 1t power, ke 1t any other control signals. We
can put that high freguency pulse train on all of those lines. Be-
cause all orf those 32 to the sensor therefore they all g. to that sen-
sor ID module. We can look at each line separately and determine the
integrity of it and we can ~ommunicate all of it back on that one line
that is dedicated for us. We can't do things like meg it or tell if
the insulation resistance wire t¢ wire is not high. We can verify
that indeed there i3 a continucus route through each one of those sig-
nal lines.

Q: Bill Cardwell (GE, Evendale): I think that you partially
answered my guesticn 1in your last statement, but looking at something
like this f»or a test <ell envircnment where we have many cells coupled
to a single data room., and not all of the lines i1n a particular cell
may be utilized for a particular engine test, most of our sensors do
not have the smart response and consequently wouldn't have any active
feedback. Would it be possible to use something like this in a system
where ncoct every wire bundle or every wire pair was connected at a par-
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ticular time? In other words, could I put it at the end of the cable
and just use that as a method of identifying which wire pair was in
fact hooked up for a particular test?

A: Steve Baker: Yes, I think you could. Every cable that we have in
the system, be it a large cable that would carry nultiple signals or
be it a small cable that goes out to a single transducer, we would
have smarts built into the cable connector so that all of the signals
that went out whether they were connected to a sensor or not, would be
interrogated. It is really based upon the idea that every wire that
von have anina ant nf veur <svstem ca~ be 1interrccated. We can tell
you that that wire gets from pcint A finally through to point Z. We
are really nct integrating this into the sensor as such, we are in-
tegrating it into the cabling, into the transmission media. We do it
simply by having a commercial manufacturer or manufacturers produce
these things, like 10-pin Amphenol cables, 61 pin, 100 pin, 20 pin or
whatever. As long as tlic assumption is, for example, pin AA, wire AA
is dedicated for our use. rfhat is all we have to have. I didn't
really describe this, but there wilil be socme programming boxes where
technician enters all of this housekeepiny infuismation. It is entered
into a nonveoclatile memory on that little connector. Then he takes
that off and goes out into the field and screws it in between the sen-
sor cakle and the sensor ({(and hopefully, it would be waterprocf. etc.
and it would have the same type of integrity that the cable does) and
voila you have your intelligence. If that goes bad, you unscrew 1it,
take it out. and put aunc*“=2>* nne 1in. We hope that it 1is going %o be
somewhat like the last talk, ("A Compuater Programmable Transducer
Micro Circuit") it would be a universal system that would really have
a nuumbery of types of modules, the types and numbers of cable connec-
tors that you have.

Q: Marty Willis (Rocketdyne): If I understand correctly, what you're
planning te do is to have a module with each sensor and the module 1is
separate from the sensor 1tself, correct?

A: Steve Baker: Correct.

v: Marty Willis: I think the concept 1is really wonderful. I know
that we have a lot of problems with cable identification to sensors.
What I don't understand is now you've created a problem: where, what,
if the module gets separated from the sensor that it goes to, don't
you have to have Quality Control now to verify that you put the cor-
rect module with the correct sensor? Otherwise, you're doing your
checks, and it 1is transferring infermation, but you still have a
potential where the module is identifying itself, but it is not iden-
tifying the correct transducer. I still see human error 1n quality
control there.

A: Steve Baker: That's right. But what we would expect to do 1is
have a security wire connecting them, or yo»u would have heat shrink,
or somehow you make 1t i1n effect permanently connected to the cable.

Q: Mariy Willis: If I know NASA though, nc one is going to be happy
with just safety wire.
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A: Steve Baker: Somewhere it needs to be done once. It could be put
into the sensor. For example, NASA wants to know what cable is con-
nected to what cable, what the configuration is so somewhere you have
to supply this device. You are right the first time out; you would
have to verify that.

Q: Marty Willis: And then, anytime there is a change I still see the
same sort of a problem. You are trying to eliminate a problem where
someone goes and swaps out a transducer at the last minute, the
calibration information hasn’'t been placed into the data base, and
soreone 1s runring cut there decing make-and-break tests or rap tests.
It would eliminate that but I still think there is a place for giving
a false sence of security. that everything is ok but it isn't.

A: Steve Baker. 211 there 1s one thing that I am planning to do
whenever <+the transducer comes 1into the calibration facility for
recalibration. A lot =-f QA testing and reconrds are done at that time

so a module reprogrammed i1u the calibration lab and permanently af-
fixed again to that cable,/renscr wculd be the best that we could do.
Somewhere on the line fthere nas to be human intervention and what we
are trying to do 1z ornce w2 have done that. and once it is permanently
attached you can sSwap these transducers all over the place in the
field. There has to be a point where that is integrated in with that

sensor or that actuator or that cable. At that point you have to be
especially careful of QA because if 1t breaks down there it obviously
breaks down. What we are expezting is that the¢re will be enouagh con-

trols in place one time and that you will properly cneck it and you
Can Termanently a#ffix it so that it becomes a permanent fixture, a

permanent :.°r% of that cable. If NASA has 3000 cables out here in
their snoply cabinet And thesc all have intelligent cable modules at-
tached to them and vou assumc that when they werc attached the QA was
done and it was done right. I really dcn't think that that is a false

sense of security.

Q: Marty Willis: Well, it doesn't fit; right now y.u're assuming
that when someone hooks up a transducer that quality control was there
and they hooked 1t up right. But I myself have rotated items on an
engine, and I theocught they were right until somecone came back later
and said, "Sheculd this be an xy or a yx"? This data doesn't jive. We
had photographs and we knew th=t someone had switched them. We had
quality centrol, toc. TIt's just that it happens. I was just curious
about how you were going Lo deal with that. Also, you have all of the
cable ID mcdules - and maybe 1t is just to eliminate doing
troubleshcoting 1t the time - Ektu! it you just had the one mocdule with

the sensor and your mas-er module verifies that the sensor 1s in the
location that you said, and if 1t dcesn't come back and say that it 1is
in the proper location then you would assume you have an error in one
of your junction connecticns?

A: Steve Baker: Yes, aiso MASA wanted to be sure that from a QA
standpoint that the right cables were connected together, and if there
was a faillure somewhere in 1 cable, this system would tell you which
cable it was and won!d alleow technicizns to immediately change that.
What if you had a probl.m 3in a termination box, which may very well be
where the cables spli* ~u* to the individual sensors? It will tell
you exactly what box it 1s, and you shculd know where it is.
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Q: Marty Willis: Just to eliminate having to go through and verify
each junction until you find the right one?

A: Steve Baker: Yes, it essentially maps the entire system automati-
cally for you.

Q: Dennis Reed (EG&G): Two gquestions on your mapping procedure.
Since its a serial mapping until you reach an open end how does it
determine i1f there is a broken line along the line?

A: Steve Baker: This line broken?

Q: Dennis Reed: Yes, if that 1s broken somewhere along the line and
you are looking for an open end how does it ....?

A: Steve Baker: If that is broken somewhere .long the line it stops
at that point. That is a potential problem. You need to know that a
line 1is verified correctly and it is broken. Really there is nothing
you can do because it 1is physically broken so your system comes back
and says these are the only components in 1it. Then you know what

should be there. Therefore, that immediately tells you that I've got
a problem in this cable. You would go check that out.

Q: Dennis Reed: So the first time that you map that you have to
physically go through and verify that what the computer says matches
what you think you have?

A: Steve Baker: That is what you would always do. You know what you
think should be there because of the way the system has been cabled.
Then you know what the computer tells you. If it tells you something
different then you need to go check at that point.

g: Lpennis, Reed: If you are looking at various transducers 1in a
serial method; if you were to have two transducers that were miswired,
say they are wired in parallel, could you determine that there arc two
transducers on that line instead of just one?

A: Steve Baker: The way this system is, and it 1is probably kind of
hard to see, 1n the cables tnat go out to the sensor we require two
dedicaced lines, one going out “o the sensor and the other one coming
back to the terminal box. Really the way that this system is set up
it is impossible to be wired in parallel. Using cne dedi-~ated line
and using two dedicated lines in the final cable which goes out to the
sensor, 1t is impossible to wire them in parallel. The fact that they
are wired 1in serial allows u=s to tell you the order that they are in,
and therefore the physical mappiaa; so really they can't be in paral-
lel. If they are we have big problems

Q: Marty Willis (Rocketdyne): Have you started taking a look at en-
vironmental use? If these mcdules are going to be mounted close to
the sensors, in guite a few of the cases aren't you going to have them
in situations where they will be exposed to extreme cold and perhaps
extreme heat, and obviously a lot of vibration? It seems to me if we
could build modules like that we would already have smart sensors that




could perform in those environments and we don't. At least not that I
know of. Have you started addressing those issues or maybe you don't
have environmental problems?

A: Steve Baker: We are starting to address those issues. If you
think about it, more and more transducers are becoming smart now. The
particular microprocessor we are using is available in the mil-grade
version. It is high-speed CMOS can withstand -30° to +60°C. Ob-
viously, the way it's made, the circuit board should be able to

withstand a fair amount of wvibration. It should be able to withstand
most environments. It will be sealed as it 1s part of the cabling
system. Everything is sealed because of the salt water environment.

From that standpoint it will be able to live in the environments of
most sensors.

Comment: Marty Willis: I know with the shuttle, in most cases when
they start chilling down thingc for quite a period of time things are
going to be pretty cold.

A: Steve Baker: It can't withstand 200 C type environment, as no
electronics can. But it should be rugged enough that it can withstand
most of the environments that sensors would n2vmally be in. There may

be a few exceptions.
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VOICE ACTIVATED HOT MIC.

SipNey R. JoNES, JR.
NavaL AIr TeEsST CeENTE™
AIRBORNE INSTRUMENTATION
PaTuxexT RIver, MD 20670

ABSTRACT

In many instrumentation applications, a good clear Intercom System (ICS) 1s
a necessity. This holds true for instrumentation personnel at various ground
sites as we{l as aircrew in multiﬁle seat aircraft. When the ICS is operated in
the "Hot Mic" mode, the microphones are constantl{ keyed or held open. This
allows the aircrew to fly their test points without keying the mic every time
they want to talk. hus all of the breathing and other extraneous noise is
transmitted over the ICS. By installing a Voice Activated Switch (VOX) which
triggers on the crew's voice, the majority of the background noise that is
transmitted on the ICS is eiiminated, making for a much quiter intercom system.

INTRODUCTION

At the Naval Air Test Center (NATC) in Patuxent River, Maryland, a lot of
flight testing is done on a variety of planes. Many of these are multiple seat
aircraft which are already equipped with a voice activated hot mic (UOXE mode.
When a trainer, a two seat version of a particular single seat aircraft, was
being tested at NATC, the pilots wanted the clear transmission which they had
experienced with previous VOX eguipped planes. As a result, the Airborre
Instrumentation Department was tasked to build and install an instrumentation
level VDX circuit for this aircraft during the time it was undergoing flight
test at NATC.

Sysvem OPERATION

Tre goal was to desian a circult tnat would detect whenever voice was com-
tng  through the micro.hone. when detected, the voice would be passed to the
1CS. Any input that was not voicc would be rejected. Among the several design
approaches  consideren was to use a Fast Fourier Transform chip to detect an
input that was within the voice frequency range. After noting the complexity
of this circuit, we opted for a simpier solution. A sound level detect cir-
cuit, similar io those found in other @OK installations was chosen. When con-
sidering the majority of noise will be iow level background noise, this circuit
should perform adeqguetely.
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dnce veoice is detected on the mic lires, it has to be switched through the
IfS system. The first aperoach was to make and breax the mic lines to the ICS
with a relay (see figure !a). Whenever the voice is to bo passed, the VOX cir-
cu'v cloces the contral swiich. The mic is then directly connected to the ICS
system. Aiter tuiiding this ¢ircuit, Toading problems were discovered between
tiie microphone pre-amp and the ICS. The VOX circuit was set up so a normal
voice level coming into the mic would tr1ﬁger the relay. When the relay was
energized connecting tne mic lines to the ICS, the ICS would load the pre-amp
so badly the resulting signal level would no longer trigger the VOX circuit.
The re a{ would be disabled, discornecting the mic from the ICS. The signal

d

level would jump back to its previous level triggering the circuit again. As
long as there was @ voice input, the relay would "chatter”. Another approach
WS needed.

Tne ICS system has two cong¢rel lines--hot mic and racio over ride. In the
cocknit, to use either mode a swiich is thrown which grounds the appropriate
control iine. To get voice to activate the hot mic mode for brief periods of
time, YOX is used to ground the hot mic control line {see figure 1b).

Interfacing the ¥9X ~ircuit to the ICS in this way solved the loading prob-
lem, Also, this was a much betier solution from a safety of flight standpoint.
In the worst case scenario of a VOX failure, the contro! switch would be
closed. HNo communications weuld be lost since the ICS would see it &as normal
hot ¢ moce, Howsver, using the previous method (figure la), in the worst
case the control switch wouid be open. The aircrew would no longer be able to
talk to the ground nr each other.

C1rcuiT DESCRIPTION

The microphore 1l:nes ere run into an amplifier and fiiter circuit (ser

figure 2). The amplifier is adjusied to get maximum gain without saturating
the amplifier (see Tiqure 3a). This provides greater sensitivitv in the
f311owin? threshotd detect circust. The falter, with a rutoff frequency of 5
KHz, will attenuate the noize with a frequency greater than that of the voice,

As a resultl, the higker frequency ncise gets filtered out before it can trigger
the VOX circuit.
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The voice signal tends to be reasonably symmetrical. Since the detect cir-
cuit looks at the amplitude of the signal, the negative portion isn't neces-
sary. The signal is sent through a clipping circuit before being fed into a
smoothing circuit. The smoothing circuit rounds the spikes. It keeps the
threshold circuitry from triggering on spikes close to the threshold level. We
now have a 0 to 15 volt signal input to the threshold detect circuit. The
threshold detect circuit uses a comparator to compare the modified voice signal
with the threshold adjust vonltage (see figure 3b). As long as the signal is
below the threshold, the comparator output is kept constant at +15 VDC. When-
ever the signal exceeds the threshold, the output drops to -15 VOC. In order
to protect the input of the next stage, a c}1pping circuit is used to limit the
signal to a 0 to 15 volt square wave (see figure 3c).

While the timer input is high (no voice detected) , the timer output
remains low keeping the contro) circuit relay disabled. When the timer input
swings low (voice detected) , tha output rises, energizing the relay which
grounds the hot mic control line. As long as the input remains low (voice
still present) , the relay is kept erergized. When the input swings high again
évoice disap?ears], the timer starts its time out sequence. If the input

oesn't drop low again (no voice detected) before a redetermined period "t°

has been reached, the relay is disabled allowing nothing to reach the ICS. If
the input does drop low before the time out period has been reached (voice
reappears) , the timer 15 reset and doesn't begin its time out sequence again
until the input goes high {see figure 3d).

After manufacturing a working circuit card, the board was redesigned with a
much greater density and & few enhancenments. The idea was to make a generic
board that with minimum effort could be configured for individual requirements.
Among these enhancements are:

s A cdual channel beard measurin? 2 3/4 inches by 4 inches.

s The ?bility to use the contro! relay normally open or normally
closed.

s The choice of using a pot instead of a fixed resistor for amplifier
gain controi.

s The avarlability of placina resistors on either side of the
threshold adjust pot to achieve any desired threshola adjust
sensitivity.

OTHER USEs

Although the circuit was desigred as a VOX control circuit, the more
correct name is a voitage activated switch or voltage monitor card. When
looking at the circult in this w2y, a whole range of possible applications
opens up. In any given instrumentation system there are a variet¥ of
transducers. The majority of these transducers provide a 0C output. hose

reriaining couid be run into signa: ccnd:tinnin? to provide a DC output. Any of
these traasducers could ope used as the ront end to this circuit. ahen
prope=ly configured this circuit could Ete an over/under voltage indicator,
temperature indicator, RPM indicator, positior indicator, etc.

CONCLUSION

Upon completina of the ‘nitiai phase of the VUX project, the Navy as well
as the aircrew liked the design so well, tnat we are currently trying to find a
suitable packaging scheme to incorporate VOX as a fleet wide modification.
Airporne Irstrumentat eon is looxing into placing VOX units in the test engineer
stations withi: our aroung station. This will enable the test engineer to hear
the piiot's voice *thr-ugh VOX whether tre aircraft nas one installed or not.
These are only ¢ fow of the applications of this simple but versatile circuit.
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VOICE ACTIVATED HOT MIC

Q: Bill Cardwell (GE, Evendale OH): Is there a problem on this being
in the aircraft with two microphones, the pilot, and the co-pilot
being close to each other and both talking at the same time, or mul-
tiple circuit activation into the same voice net?

A: Sidney Jones: No, this is no different than the aircraft con-
figuration without hot mic.

Q: Bill Cardwell: The ground station has to recognize by voice then
which is talking?

A: Sidney Jones: Yes.




Improving the Response Time and Accuracy of Transient Thermal Measurements in Live
Fire Testing (LFT)"
James G. Faller

Live fire vulnerability testing is mandated by law for all major development combat
vehicles of the Army. One of the principal aims of such testing is to gain a realistic crew
casualty assessment during round penetration of the vehicle. Thermal injury to skin and
eyes stemming primarily from direct contact with hot gases, liquids, and particulates
represents a major hazard to the vehicle crew. Recent survivability test programs at
Aberdeen Proving Ground (APG) have led to the development of test methods and
instrumentation to collect rapid, real time, usable and integrable thermocouple
temperature and heat flux sensor data desired by the office of the Surgeon General in
making their hazard analysis.
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A Very Wide Dynami~ Range Data Acquisition System

Jack R. Carrel
Senic: Engineer
FGsG Energy Measurements, Inc.
Sandia/DeD Engineering
Las Vegas, NV

Abstract

This article presents the design of a data
acquisition system that was developed by EGEG Erergy
Measurements foc Sandia National Laberatories. The
acquisition system ccmprises individual seismometers
that measurz seismic activity at remote stations
located several hundred miles tiom a central data
collection facility and contrcl point. The remote
stations operate unattended and receive commands for
setup and status check fiom the conticl peint.
{Additionally, the stations’ operation can be modi-
fied by transmitting software modifications from the
control point.) At the remote station the data from
the seismometers, ranging from 10 microvolts tc 4
solts, is digitized and transmitted over telephone
lines to the central collection point. FRecance of
the wide—uynamic input voitage range, the system was
designed witn .f-bit analngy-to-digital converters
and an autctanging capability. giving an effective
20-bit range. Errocs dus tc rolse were kept to a
minimum by careful selection of components and
effective packaying design; nonlinearity was reduced
by oversampling the input signal and then cdigitally
filtering the sampled data.

TNTRODUCTION

This document presents Lhe considerations and
processes used in the design cof a seismic data
acquisition system developed by EGEG Energy Measure-
ments, Inc. four Sandie National iaboratzries (ENL).
1he full data acquisition syster is described, and
the new design of *he remote-s:ation data arquisi-
tion eguipment ic presented. The critical preblem
areas are identified; these inrlude raniom noise and
systematic errnrs.  The careful consideration of
thece and other error sources 'n the zelect:ion of
system componencs and cenbfiguraticn minimred or
negated their effects. The primary challenge in the
development of this system was the very wide range
of signal amplitude from the varicus seismometers.
By adjusting the system for each seismometet and
then segmenting thr remaining signal iange, a system
cculd be developed that would perfors more than
adequately.

BACKSROUND

The seismic data acquisition system collects
information from seismic stations that are located
sevaral hundred miles from a central data collection
and control point. Each station is composed of sev-
eral seismometers that are attached to signal condi-
tioning equipment. The output of the signal condi-
tioning equipment is digitized and transmitted by
modem communications to the central data collection
facility, where the data is processed for analysis
and archival, From the central data collection
facility, an cperator can send commands to the
remote station. These commands include system
readiness tests and confiquration settings for each
seismometer channel. The configuration settings
contrsl the alienuation of the signal prior to the
analog-to-digital conversion. These attenuator
settings are used to condition the seismometer sig-
nal for the maximum usage of the analog-to-digital
converter operating range. These attenuations are
implemented through the actuation of relays. The
relays control the connection of a series of resis-
tors that provide fixed amounts of attenuation to
the input signal.

The system is tested for readiness by sending a
specified current to the calibration coil of the
seismometer. The system monitors the resulting out-
put of the seismometer. The operator can then ver-
ify that the system is functioning by watching the
signal that is collected at the central collection
facility. This test verifies that the seismometer
mass is not too close to a boundary and that the
data acimnsition system is functioning properly.

NEW SYSTEM REQUIREMENTS

The design that 1s being considered in this
document is a redesign uf the remote-station data
arquisition egquipment., The customer at SNL and the
EG&C operators designated several requirements for
the new design. These requirements are:

e Provide five channels per remote station

e Simplify design and nperation; remove relays

® Increase sensitivity

e Incrzase resolution within each range

e Allow remote software modification

@ ise high-level lanquage

e Synchronize all of the stations for relative
phase measurements

There are five seismometers at each of the

the five channels at the
seismometer attached to 1t.

remote stations. Each of
remote stetion has a




The details concerning the seismometers will be

presented later.

The existing system had two major ptoblems that
affected its reliability. First, the system con-
tained a large number of relays. The problems with
these relays caused the operators to ask that the
new design eliminate relays or at least reduce the
number of them. Second, the existing system used
S$ID vus card edge connectors. As is generally the
case with card edge connectors, it was necessary to
clean and re-seat the cards periodically.

The required sensitivity of the new system is 1
microvolt. The sensitivity of the existing system
was 100 microvolts. As will be shown later, the
lowest signals expected frem the seismometer
approach a sensitivity of less than 1 microvolr.

The custemer specifically asked that we increase
the resolution of the system. The concern is that
very small signals contain information that is of
interest. If the small-amplitude frequency compo-
nents are riding on a larger-amplitude component,
the existing system would continue to change ranges
to ensure that the larger amplitude signal would not
be clipped. The resolution of the existing sys.em
was 11 to 12 bits within 3 range. The new system
uses fewer ianges and '%-bit analog-to-digital con-
verters to meet this requirement.

To change the operating software of the existing
stations, new PROMs would have to be programmed, and
then carried out to the remote station to be
installed in the system. GSince making these rhanges
at most of the stations would iequire several hun-
dred miles of travel, a better methed of upgrading
and modifying the system software was requited. In
the new system, electrically erasable PROMs are
used to store the operating program. This program
can be changed by way of the modem link from the
central data collection facility.

tinally, 1n order to make the phase measurements
between remote stations more accurate, the new sys-
tem synchronizes the loral swmpling clocks to WWVB.

This synchronization allows measurements with C.5
milliseconds of relarive accuracy.
[3PUT REQUIREMENTS

There are three types of seismometers in the

se1smic system.  Theee threc seismumeters are shown
in lable 1, along with the minimum and maximum sig-
nal levels that will be expected from them. Note
that the total ringe covered by these scismometers
ranges from 0.9 mi~rovolts as the mimimum signal
from the 5L-210-:20 to 4.7 volte as the maximum from
the G5-13. These two :epresent a range of ovar 130
dB. To cover this range would tequite that the sys-
tem have an analcg-to-digital converter of 24 bits
including the sign bit, since these are only peak
voltage values. Ag 15 also shown in the table, the
expected input signal level of each seismometer type

has a range of cnly 105 dB. This range can be
covered with an analug-ta-diptal converter of 20
hits including the sign Lit. That 15 a snbstantial
reduction in  the  reqited  performance of  the

analeqg-to-digital converter.

The existing system sampled the input signal at

0 samples per secand. In order tno minimize the
impact on the analysis software, the =ample tate
temained at 50 samples per second for data thal is

supplied in real time to the

facility.

data collection

THE NEW SYSTEM

The new system is represented by the block dia-
gram in Figure 1. The left side of the fiqure shows
the equipment on the seismometer pad, which is a
large concrete platform that the seismometers are
set on.

In the new system, all possible sources of noise
are cemoved from the pad area. Experience has shown
that the two main sources of noise are 60 Hz elec-
trical neise from AC pover cables, and mechanical
noise generated by such things as cooling fans.
Both of these sources can cause subharmonics to be
generated that are within the bandwidth of the seis-
mometers and the instrumentation. To remove these
sources, two criteria were selected for the new sys-
tem. First, the instrumentation rack would be moved
as far away from the pad as feasible. This would
remove all of the sources of mechanical noise from

the pad area. Second, the pad would be kept free of
any AC power. All of the equipment in the new sys-
tem that needed to he either in the area or on the

pad would be DC veltage.

Since the instrumentation had to be moved from
the pad and since the signals from the seismometers
are of such a low level, the new system has pre-
amplifiers on the pad. Tnese preamplifiers amplify
the seismometer signal and provide a quiet impedance
matching to the seismometer output. The preampli-
fiers use DC power that is supplied from the Distri-
hution Unit. In addition to supplying DC power to
the Preamplifiers, the Distribution UniiL also sup-
plies the calibration coil signal to each of the
seismometers,

As is shown on the right side of Fiqure 1, a VME
chassis was selected to contain the station instru-
mentation. VME was chosen because of the positive
mating connectors and because of the availability of
chassis on the commercial market., The signal from
the Preamplifiers enters the Analog Module, where it
is digitized and transferred to the Processor mod-
ule. The Processor Module then sends the digitized
signal to the central data collection facility
through the modem connected to one of its serial

ports.

‘he VME chassis was modified to include sepatate
prwer supplies for all of the analog circuitry.
This modification was necessary because VME chassis
are designed for a digital environment and are sup-
plied with a switching regulated power supply, a
ty;w. of power supply that is inherently very noisy.
Also, because digital systems tend to put noise on
the power supply because of the digital switching,
the analog system was suppliea with quieter linear
tequlated powet supplies. In addition to being
quieter than the switching requlator power supply,
the separate linear regulated power supplies further
isnlate the analog portion of the system from the
digital system and keep the 1isolation between the
two systems intact. The information passed between
the analog and digital portions of the system is
through optical couple.s,

the calibration Module provides several func-
tions to the system. It supplies the sampling clock
ter the Analca Modules in the VME chassis; this sam-
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SEISMIC STATION BLOCK DIAGRAM
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Figure 1. Seismic station block diagram.
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SEISMIC STATION BLOCK DIAGRAM
(CONCLUDED)
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Fioiure 1. Seismic station block diagram (concluded).




pling clock is synchronized te WWVB. The Calibra-
tion Module also generates the calibration signals
for the seismometers and provides the DC vcltages
for the Distribution Unit.

The Memory Module in the VME chassis buffers the
A=t~ that is transmitted to the Central Data CTzllec-
tion Facility and provides additional memory that
can be used by the Frocessor Module. This memory is
CMOS; 1t has batterr backup when pawer 1s net
applied from the VME bus.

POTENTIAL ERRCR SOURCES

The remote-station instrumentation can operate
only if the potential sources for errors are con-
sidered in the system design. Table 2 lists the
major errors that were ccnsidered in the design of
this system. Thes= eirors are generated in the sig-
nal, primarily in the analoqg circuitry.

The gair: errcr and the gain linearity
error must be considered in Lhe design nf each of
the amplifiers in the signai path. Table 3 chows
the gain calcularions for the resistors in an
inverting operational amplifier circuit, These
calculations show, of course, that the gain cof the
amplifier relies more on the ratio of the resistors
than on the accuracy of each tesistor. Also, the
gain stabil:ty with temperature depends upon the
matching of the temperzture ccefficients of the two
resistors. This means thet even if the temperature
coeff:cients of the resistors are not within the
0.0015 percent requived by a 16-bit system, the gain
errcr conld still be sufficiently small if the ratio
of the temperature coefficients of the resistors
track within the 0 (005 percent tclerance.

The gain linearity error is the wost difficult
one to determine and ccrrect, If the temperature
coefficients of the gain resistors of the amplifiers
do rot track, or 1f their temperature coefficients
do not track linearly with each other, nenlinear
gain errors wiil =xist in the sysiem. The likelihood
of these ertcrs ocrurring in a lacge encugh magni-
tude to be a problem :s very slight. We have not
bran able to devise an adeguate test to verify the
linearity ot the system to the full 20-bit acruracy.
“he prohiems with this kipA cf testing invelve find-
119 3 signal scurrce and a measurement device that

will cuver the full range of the system. As a
rezuit, tis hest way (o test the linearity ~f the
system .5 oto test the various portions of 1t sepa-
rately. Ta do this, we can izck at the system as
swe Ihebit evsrams.  Care mist he tigen that the
wntegral nonliveard does ot mnse o disceininle
errer Detween the 1% pit ranucs

The DL cEfoet 13 ot of geeat concern as long as
1% roes not accumulate through the system and cause
the lower range =f the system to be unusable. The

infoumation from the seismometers is studied mostly
in the frequency domain. Theretore, as long as the
DC offset 1s low encugh -2 ail.w the collecticon of
the other trequency comiwnents, 1t is net a problem.
The C-oftset Arifr can be a problem 1f 1t
suffizient frequen:y that :t appears to be seismic
information. Because the seismic information 1s of
such low frequency, the LC offser drift with temper-
ature can be a source 0f error and should be consid-
ered throughout the design.

15 ok

Because of the extremely low levels of some of
the signals from the seismometers, noise 1s an

important factor in the design ot the instrumenta-
tion system. As previously discussed, there are two
types cf noise in this system: electrical and
mechanical. The effects of the mechanical noise are
greatly reduced by the removal of the instrumenta-
tion rack and its associated cooling fans from the
seismometer pad.

The electrical noise has three major sources:
component, circuit, and 60-Hz power lines. The
component noisé 1s a tesult of the random thermal
motion of electrons and although very small can
still add to the overall circuit noise. The circuit
noise results from the cenfiguration of components
that reinforce or inhibit noise generation and accu-
mulation through the system. {Component noise
sources such as flicker ncise and shot noise should
also be considered, especially with the use of mono-
lithic operational amplifiers.} As is true with
most instrumentation systems, the insertion of 60-Hz
signals into the measurement signal must be elimi-
nated or at least reduced. Often in an instrumenta-
tior system, the problem is not the existence of
60-Ez noise in the environment, but rather the
insertion of 60-Hz signals as a result of improper
circuit configuration and improper grounding and
shielding technigues.

Another pcssible source of error in the syster
can be the generation of frequency-dependent devia-
tions in the amplitude response of the system in the
frequency band cf interest. The most likely cause
of this errcr is the improper alignment of poles
from the filters that are used throughout the sys-
tem. If the poles line up, then the ripple from
each filter can accumulate into an error that 1s
substantial enough to affect the performance of the
system. Tne filters of the system need to be
designed to ensure that this does not occur. This
35 the one error discussed here that cun also be
~aused by the digital porticon of the system.

DESIGN APPROACH

ire approach followed in the desian cf the
remcte staticn instiumentation system was to pay
attention tc the generation of e’rors in the analcg
portion of the system, keasp the digital portion from
causing errcrs to feed intc the analog signal, and
keep the digital signal processing from generating
errors through numerical methods. The first of
these ronsideraticns, the generatien of errcrs in
the anaslog pcrtion of the system, reguired the
greatect amcunt of attention. The fellowing guide-
iines were used to achieve the minimum amount of
erior 1n the analey simnal:

e Minimize compenents in the signal path
e Use l.w noise cumpenents
e Keep the signal path quiet

The number of components in the signal path was
vept to a minimun because all electrical components
generate noise that will accumulate in the citcuit.
Once in the system, the noise will either add or
muitiply, ut in either vase 1t will accumulate
throughout the circuit and will influence the meas-
urtement signal.

By selecting low-noise components, the accumula-
tion of nuise in the system can be kept to a mini-
mum. Fnr instance, the thermal noise in resistors
1s proportional tn the temperature and the resis-
tance value 2f the resistor. In this design we did
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same temperature. The nonlinearity etror is still
aifficult to verify, although it does not appear to
be a problem. The DC offset is not a problem
because of the stability of the circuit and the
monolithic amplifiers that were rhoszen, the OPA27s.
The overall design of the system was simplified by
the segmentation of the required 20-bit range for a
single digitizer into twe overlapping l6-bit ranges.
Finally, digital processing techniques such as over-
sampling and filterino were wused to redure the
effects of unwanted signals.
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A VERY WIDE DYNAMIC RANGE DATA ACQUISITION SYSTEM

Q: Steve Baker (Oakridge National Laboratory): I noticed you used
essentially a successive-approximation A/D converter from Crystal, one
that gave you a high sampling rate?

A: Jack Carrel: Yes, but I don't think that it is successive ap-
proximation.

Q: Steve Baker: The basic question that I had is that the other ap-
proach you could take would be to use the slower dual or triple slope
integrating A/D converter and I wondered what your thought process
was, why you chose this over that?

A: Jack Carrel: Even those converters are going to have the wideband
component noise, and given the level,I thought it was more important
to have a high sample rate, and tien 1n the digital domain remove that
thermal noise, called Johnson noise, from the systemn. I would not
have that as an option in some of those others. There is an 18-bit
converter that is made by Analog Devices but it only has about a 10 Hz
bandwidth and sc¢ I don't have a lot of room to play with doing my
digital filtering.
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