Miniature, High-Speed, Data Acquisition Systems

Presented by:
Larry Brown, Senior Technical Advisor
10720 Bradford Road, Suite 110
Littleton, Colorado 80127

Presented to:
23rd Transducer Workshop
Buffalo, New York

17-18 June, 2008
History of Miniature Data Acquisition Systems (MDAS)

- Miniaturization of electronics through the last several decades made possible by:
 - Vacuum tubes replaced by transistors
 - Transistors grouped together into integrated circuits
 - Specialized integrated circuits developed, multi-chip module (MCM)
 - Development of large non-volatile memories
 - Improvement of battery energy density
 - Carbon-zinc 130,000 J/kg (not rechargeable)
 - Lithium-ion 460,000 J/kg (rechargeable)
Specialized Data Acquisition

- Conventional data acquisition systems are not applicable or practical for specialized testing scenarios
 - Where interconnecting wires are not possible or practical
 - Large size limits ability to operate in severe shock environments
 - Small size is required to fit into many modern test scenarios such as
 - Anthropomorphic systems
 - Other human injury studies
MDAS Design Criteria

- Stand-alone operation
 - Computer not connected during data acquisition
- High sampling rates
 - 1 microsecond between samples (adequate for air blast data acquisition)
- Small size
- Non-volatile memory
- Built-in signal conditioning
 - Piezoelectric
 - Piezoresistive
 - Voltage inputs
- High capacity battery
 - Operate all day without recharging
ARA Experience in Data Acquisition Systems

- Extensive field testing
 - Understand requirements of general and specialized test protocols
- Integration of many complex instrumentations systems
 - Large rack-mount system capabilities into much smaller miniaturized packages (have developed generations of data acquisition systems)
- Miniature data acquisition systems
 - Have designed and constructed several generations
 - Deployed these systems in numerous field experiments
 - Improved systems as needed to meet changing acquisition requirements
ARA Experience in Data Acquisition Systems

- Examples of ARA data acquisition systems over time
MINIDAS Attributes

- Small-stand alone package
 - Electronics are approximately 3”x4”x1” w/o battery
- Adjustable sample rates
 - Maximum of 1 megasample per second
- High resolution 16-bit digitizer
- Rechargeable 29-hour lithium polymer battery (1” high)
- Utilizes 128-megabyte nonvolatile compact flash memory (removable)
- Built-in signal conditioning for added versatility
- Proven to withstand high accelerations
 - Hundreds of g’s from explosive tests
- High data fidelity due to high bandwidth (no cable losses) and less noise for better S/N ratio
MINIDAS Package

- Green indicator = ready to record
- Red indicator = trigger received
- Yellow indicator = battery low
Application Example #1

- Three MINIDAS units placed in chest cavity of dummy during explosive test (where dummy gets thrown by high overpressures)
- Triaxial accelerometer
 - Early-time acceleration and velocity
 - Impact deceleration
- Long time between the test event and recovery of MINIDAS system due to safety protocols
Application Example #2

- Four MINIDAS units placed in the vest of 17 soldiers during training exercises (explosive breaching events)
- Pressures on the helmet and the vest shoulders measured
Application Example #3

- Pressures measured on ARA “Ironman” test dummy during a simulation of a suicide bomber explosion on a bus
- Pressures were measured on the chest and sides of the anthropomorphic dummy
MICRODAS Prototype Development

- Although the MINIDAS is small, there is still a need for even smaller packaging
- Microdas units are being developed with many of the same features, but in a much smaller package to allow:
 - More cost effective deployments
 - Easier to harden
 - Overall system cost lower allowing more acquisition channels per test
MICRODAS Attributes

- Small-stand alone package
 - Electronics package is approximately 1”x1”x0.25” w/o battery
 - Custom battery 1” x 0.25”
 - Package sampling rate, signal conditioning and filtering customized during fabrication
- 1-microsecond sampling interval (max rate)
- High-resolution 16-bit digitizer
- 4-megabyte nonvolatile memory
- Built-in signal conditioning
- Higher resistance to shock
 - Expect 100,000 g w/appropriate packaging
- Lower cost than MINIDAS
Lower Fielding Cost for MINIDAS and MICRODAS

- Greatly reduced or eliminates test site transducer cables to an instrumentation van
 - Cost of cable, trenching, and junction boxes
 - Labor costs
- Use of instrumentation van eliminated and attendant
 - Cost of van
 - Cost of heating/cooling
 - Generator or commercial power
 - Cost of protection
 - Blast/fragmentation
 - Lightning
Remote Acquisition Issues for MDAS Units

- **Trigger signal** – how to ensure consistent data acquisition
 - Radio-based trigger capability already developed
- **Data download approach**
 - Download memory cards – have been doing
 - Wireless technology – Wi-Fi
- **Battery recharge technique**
 - Ultra-low current standby mode desirable
 - Minimizes recharging of batteries
System Cost

- MINIDAS
 - Approximately $2000 per channel in volume
- MICRODAS
 - Projected to be $500 per channel in volume
Beyond MICRODAS

- Specifications similar to MICRODAS
- Combine most components onto single integrated circuit
- Projected size 0.2”x0.2”x0.1” w/o battery
Summary

- Current MDAS technology allows sophisticated measurements to be made cost effectively in remote and harsh environments
- Cost effectiveness allows more data to be taken for a given test scenario
 - Elimination of cabling, trenching, junction boxes
 - Reduction of labor costs
 - Lower operational costs (van, protection, etc.)
- Higher data fidelity
 - Bandwidth higher
 - Better S/N ratio
- Increased hardening capability due to size
- Future designs will offer
 - Even smaller designs
 - Lower costs